Genetic Evidence Supports a Major Role for Akt1 in VSMCs During Atherogenesis.

Circ Res

From the Vascular Biology and Therapeutics Program (N.R., W.C.S., C.F-.H.), Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine and Department of Pathology (N.R., C.F-.H.), Department of Pharmacology (W.C.S.), Yale University School of Medicine, New Haven, CT; Leon H. Charney Division of Cardiology and Cell Biology Departments of Medicine, New York University School of Medicine, NY (A.C.W., A.F.-H., A.G.S., C.F-.H.); and Department of Pharmacology, Max-Plank-Institute for Heart and Lung Research, Bad Nauheim, Germany (S.O.).

Published: May 2015

Rationale: Coronary artery disease, the direct result of atherosclerosis, is the most common cause of death in Western societies. Vascular smooth muscle cell (VSMC) apoptosis occurs during the progression of atherosclerosis and in advanced lesions and promotes plaque necrosis, a common feature of high-risk/vulnerable atherosclerotic plaques. Akt1, a serine/threonine protein kinase, regulates several key endothelial cell and VSMC functions including cell growth, migration, survival, and vascular tone. Although global deficiency of Akt1 results in impaired angiogenesis and massive atherosclerosis, the specific contribution of VSMC Akt1 remains poorly characterized.

Objective: To investigate the contribution of VSMC Akt1 during atherogenesis and in established atherosclerotic plaques.

Methods And Results: We generated 2 mouse models in which Akt1 expression can be suppressed specifically in VSCMs before (Apoe(-/-)Akt1(fl/fl)Sm22α(CRE)) and after (Apoe(-/-)Akt1(fl/fl)SM-MHC-CreER(T2E)) the formation of atherosclerotic plaques. This approach allows us to interrogate the role of Akt1 during the initial and late steps of atherogenesis. The absence of Akt1 in VSMCs during the progression of atherosclerosis results in larger atherosclerotic plaques characterized by bigger necrotic core areas, enhanced VSMC apoptosis, and reduced fibrous cap and collagen content. In contrast, VSMC Akt1 inhibition in established atherosclerotic plaques does not influence lesion size but markedly reduces the relative fibrous cap area in plaques and increases VSMC apoptosis.

Conclusions: Akt1 expression in VSMCs influences early and late stages of atherosclerosis. The absence of Akt1 in VSMCs induces features of plaque vulnerability including fibrous cap thinning and extensive necrotic core areas. These observations suggest that interventions enhancing Akt1 expression specifically in VSMCs may lessen plaque progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4561531PMC
http://dx.doi.org/10.1161/CIRCRESAHA.116.305895DOI Listing

Publication Analysis

Top Keywords

atherosclerotic plaques
16
akt1
12
akt1 vsmcs
12
vsmc akt1
12
akt1 expression
12
fibrous cap
12
role akt1
8
cell vsmc
8
vsmc apoptosis
8
progression atherosclerosis
8

Similar Publications

Background: Complement activation may promote atherosclerosis. Yet, data on the to which extent complement, and more specifically the alternative complement pathway, is activated in patients with carotid atherosclerosis and related to adverse outcome in these patients, are scarce.

Methods And Results: We measured, by ELISA, plasma levels of factor D, properdin, C3bBbP (C3 convertase), and factor H in patients with advanced carotid atherosclerosis in a (n=324) and in a (n=206) cohort in relation to adverse outcome (mean follow-up 7.

View Article and Find Full Text PDF

Geometrical determinants of cerebral artery fenestration for cerebral infarction.

PeerJ

January 2025

Department of Magnetic Resonance Imaging, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China.

Purpose: Few data are available on the causality of cerebral artery fenestration (CAF) triggering cerebral infarction (CI) and this study aims to identify representative morphological features that can indicate risks.

Methods: A cohort comprising 89 patients diagnosed with CAF were enrolled from a total of 9,986 cranial MR angiographies. These patients were categorized into Infarction Group ( = 55) and Control Group ( = 34) according to infarction events.

View Article and Find Full Text PDF

Objective: Recent studies have indicated a close relationship between intracranial arterial stenosis and white matter hyperintensities (WMHs), but few have reported on the correlation between the characteristics of intracranial arterial wall plaques and WMHs. The aim of this study was to comprehensively assess the correlation between intracranial atherosclerosis plaques and WMHs using 3.0T high-resolution magnetic resonance imaging (HR-MRI).

View Article and Find Full Text PDF

Objective: M6A methylation-regulated macrophages play an important role in the occurrence and development of arteriosclerosis. However, their role in lower extremity arteriosclerosis remains unclear. Therefore, this study aims to explore the key factors that regulate arteriosclerosis methylation in the lower extremities and the mechanism by which they affect arteriosclerosis by influencing macrophage polarization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!