Land use regression (LUR) models have been used to assess air pollutant exposure, but limited evidence exists on whether location-specific LUR models are applicable to other locations (transferability) or general models are applicable to smaller areas (generalizability). We tested transferability and generalizability of spatial-temporal LUR models of hourly particle number concentration (PNC) for Boston-area (MA, U.S.A.) urban neighborhoods near Interstate 93. Four neighborhood-specific regression models and one Boston-area model were developed from mobile monitoring measurements (34-46 days/neighborhood over one year each). Transferability was tested by applying each neighborhood-specific model to the other neighborhoods; generalizability was tested by applying the Boston-area model to each neighborhood. Both the transferability and generalizability of models were tested with and without neighborhood-specific calibration. Important PNC predictors (adjusted-R(2) = 0.24-0.43) included wind speed and direction, temperature, highway traffic volume, and distance from the highway edge. Direct model transferability was poor (R(2) < 0.17). Locally-calibrated transferred models (R(2) = 0.19-0.40) and the Boston-area model (adjusted-R(2) = 0.26, range: 0.13-0.30) performed similarly to neighborhood-specific models; however, some coefficients of locally calibrated transferred models were uninterpretable. Our results show that transferability of neighborhood-specific LUR models of hourly PNC was limited, but that a general model performed acceptably in multiple areas when calibrated with local data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4440409 | PMC |
http://dx.doi.org/10.1021/es5061676 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!