Probing methanol cluster growth by vacuum ultraviolet ionization.

J Phys Chem A

Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States.

Published: May 2015

The ability to probe the formation and growth of clusters is key to answering fundamental questions in solvation and nucleation phenomena. Here, we present a mass spectrometric study of methanol cluster dynamics to investigate these two major processes. The clusters are produced in a molecular beam and ionized by vacuum ultraviolet (VUV) radiation at intermediate distances between the nozzle and the skimmer sampling different regimes of the supersonic expansion. The resulting cluster distribution is studied by time-of-flight mass spectrometry. Experimental conditions are optimized to produce intermediate size protonated methanol and methanol-water clusters and mass spectra and photoionization onsets and obtained. These results demonstrate that intensity distributions vary significantly at various nozzle to ionization distances. Ion-molecule reactions closer to the nozzle tend to dominate leading to the formation of protonated species. The protonated trimer is found to be the most abundant ion at shorter distances because of a closed solvation shell, a larger photoionization cross section compared to the dimer, and an enhanced neutral tetramer precursor. On the other hand, the protonated dimer becomes the most abundant ion at farther distances because of low neutral density and an enhanced charged protonated monomer-neutral methanol interaction. Thomson's liquid drop model is used to qualitatively explain the observed distributions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.5b00912DOI Listing

Publication Analysis

Top Keywords

methanol cluster
8
vacuum ultraviolet
8
abundant ion
8
protonated
5
probing methanol
4
cluster growth
4
growth vacuum
4
ultraviolet ionization
4
ionization ability
4
ability probe
4

Similar Publications

We report herein two families of porous coordination clusters (PCCs) with 216 nuclearity (M120RE96 or PCC-216MR) and 300 nuclearity (Co144Gd156 or PCC-300CG). For the first family M could be either nickel or cobalt, and RE = Pr, Nd, Sm, Eu, and Gd; while the latter features the highest nuclearity of transition-rare earth metal clusters. Characterized by their cube-like, hollow structures, these clusters exhibit the ability to absorb N2 and CO2.

View Article and Find Full Text PDF

Size Distribution of Zinc Oxide Nanoparticles Depending on the Temperature of Electrochemical Synthesis.

Materials (Basel)

January 2025

Department of Mechanical Engineering and Agrophysics, Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka Street 116 B, 30-149 Krakow, Poland.

One of the methods for obtaining zinc oxide nanoparticles (ZnO NPs) is electrochemical synthesis. In this study, the anodic dissolution process of metallic zinc in alcohol solutions of LiCl was used to synthesize ZnO NPs. The products were obtained as colloidal suspensions in an electrolyte solution.

View Article and Find Full Text PDF

Continuous photo-oxidation of methane to methanol at an atomically tailored reticular gas-solid interface.

Nat Commun

January 2025

Research Center for Solar Driven Carbon Neutrality, School of Physics Science and Technology, In-stitute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China.

Photo-oxidation of methane (CH) using hydrogen peroxide (HO) synthesized in situ from air and water under sunlight offers an attractive route for producing green methanol while storing intermittent solar energy. However, in commonly used aqueous-phase systems, photocatalysis efficiency is severely limited due to the ultralow availability of CH gas and HO intermediate at the flooded interface. Here, we report an atomically modified metal-organic framework (MOF) membrane nanoreactor that promotes direct CH photo-oxidation to methanol at the gas-solid interface in a reticular open framework.

View Article and Find Full Text PDF

Efficient amine-assisted CO hydrogenation to methanol co-catalyzed by metallic and oxidized sites within ruthenium clusters.

Nat Commun

January 2025

Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, PR China.

Amine-assisted two-step CO hydrogenation is an efficient route for methanol production. To maximize the overall catalytic performance, both the N-formylation of amine with CO (i.e.

View Article and Find Full Text PDF

The most commonly used homogeneous catalyst for fatty acid esterification is a corrosive sulphuric acid. However, this requires costly investment in non-corrosive equipment, presents a safety risk, is time consuming, and increases effluent generation. In this study, inorganic 3D heteroborane cluster strong acids are employed for the first time as homogeneous catalysts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!