The design of optimal interfaces between photoelectrodes and catalysts is a key challenge in building photoelectrochemical cells to split water. Iridium dioxide (IrO2) is an efficient catalyst for oxygen evolution, stable in acidic conditions, and hence a good candidate to be interfaced with photoanodes. Using first-principles quantum mechanical calculations, we investigated the structural and electronic properties of tungsten trioxide (WO3) surfaces interfaced with an IrO2 thin film. We built a microscopic model of the interface that exhibits a formation energy lower than the surface energy of the most stable IrO2 surface, in spite of a large lattice mismatch, and has no impurity states pinning the Fermi level. We found that, upon full coverage of WO3 by IrO2, the two oxides form undesirable Ohmic contacts. However, our calculations predicted that if both oxides are partially exposed to water solvent, the relative position of the absorber conduction band and the catalyst Fermi level favors charge transfer to the catalyst and hence water splitting. We propose that, for oxide photoelectrodes interfaced with IrO2, it is advantageous to form rough interfaces with the catalyst, e.g., by depositing nanoparticles, instead of sharp interfaces with thin films.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.5b00798 | DOI Listing |
Precis Chem
December 2024
State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
The interfacial proton transfer (PT) reaction on the metal oxide surface is an important step in many chemical processes including photoelectrocatalytic water splitting, dehydrogenation, and hydrogen storage. The investigation of the PT process, in terms of thermodynamics and kinetics, has received considerable attention, but the individual free energy barriers and solvent effects for different PT pathways on rutile oxide are still lacking. Here, by applying a combination of ab initio and deep potential molecular dynamics methods, we have studied interfacial PT mechanisms by selecting the rutile SnO(110)/HO interface as an example of an oxide with the characteristic of frequently interfacial PT processes.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Northwest Institute for Non-ferrous Metal Research, Xi'an 710016, China; School of Materials Science & Engineering, Xi'an University of Technology, Xi'an 710048, China. Electronic address:
High-entropy alloy (HEA) nanomaterials have emerged as promising candidates as oxygen evolution reaction (OER) electrocatalyst to overcome the existing issues of the sluggish reaction kinetics and poor stability. In this study, IrRuCoCuNi HEA three-dimensional-nanoframeworks (3DNF) are prepared using a scalable approach-the spray-drying technique combined with thermal decomposition reduction (SD-TDR). The optimized catalyst, IrRuCoCuNi, demonstrates superior OER performance, with an overpotential of 264 mV at 10 mA cm and a Tafel slope of 47 mV dec, considerably surpassing the catalytic activity of commercial IrO.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
The sluggish kinetics of the anodic process, known as the oxygen evolution reaction (OER), has posed a significant challenge for the practical application of proton exchange membrane water electrolyzers in industrial settings. This study introduces a high-performance OER catalyst by anchoring iridium oxide nanoparticles (IrO) onto a cobalt oxide (CoO) substrate via a two-step combustion method. The resulting IrO@CoO catalyst demonstrates a significant enhancement in both catalytic activity and stability in acidic environments.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemistry, Material Science Lab, Annamalai University, Annamalai Nagar, Tamilnadu 608 002, India.
Herein, we demonstrated that a polycrystalline cobalt oxide/borate (CoO-Bo) hybrid catalyst prepared by coprecipitation followed a simple annealing process with a viable boron source of less hazardous ammonium borate, an efficient electrocatalyst for the oxygen evolution reaction (OER). The borate species in the crystalline cobalt oxide lattice provides a tunable polycrystalline morphology with a defect-rich lattice and numerous grain boundaries in the CoO-Bo hybrid electrocatalyst, which significantly boosts the OER activity compared to the crystalline counterparts of CoO and precious IrO in a harsh alkaline electrolyte (1 M KOH). The borate modulated CoO-Bo achieves a 10 mA/cm geometrical current density for the OER with a very low overpotential (η) of 271 mV and small Tafel slope of 34 mV dec, in an inert glassy carbon (GC) support, while only requiring η of 267 and 32 mV dec in a 3D nickel foam (NF) support at the same current density.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Department of Energy and Environmental Materials, Suzhou Laboratory, 388 Ruoshui Road, Suzhou, China. Electronic address:
The sluggish kinetics, poor stability, and high iridium loading in acidic oxygen evolution reaction (OER) present significant challenges for proton exchange membrane water electrolyzers (PEMWE). While supported catalysts can enhance the utilization and activity of Ir atoms, they often fail to mitigate the detrimental effects of over-oxidation and dissolution of Ir. Here, we leverage the redox properties of the Mn/Mn couple as electronic modulators to develop a low-iridium, durable electrocatalyst for acidic OER.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!