Carbon nanotubes (CNTs) are widely manufactured nanoparticles, which are being utilized in a number of consumer products, such as sporting goods, electronics and biomedical applications. Due to their accelerating production and use, CNTs constitute a potential environmental risk if they are released to soil and groundwater systems. It is therefore essential to improve the current understanding of environmental fate and transport of CNTs. The transport and retention of CNTs in both natural and artificial media have been reported in literature, but the findings widely vary and are thus not conclusive. There are a number of physical and chemical parameters responsible for variation in retention and transport. In this study, a complete procedure of selected multiwalled carbon nanotubes (MWCNTs) is presented starting from their surface modification to a complete set of laboratory column experiments at critical physical and chemical scenarios. Results indicate that the stability of the commercially available MWCNTs are critical with their attached surface functional group which can also influence the transport and retention of MWCNT through the surrounding medium.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4401405PMC
http://dx.doi.org/10.3791/52634DOI Listing

Publication Analysis

Top Keywords

carbon nanotubes
12
transport retention
8
physical chemical
8
transport
5
transport surface-modified
4
surface-modified carbon
4
nanotubes soil
4
soil column
4
column carbon
4
cnts
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!