Y genetic variation and phenotypic diversity in health and disease.

Biol Sex Differ

Department of Medicine, University of Vermont, 89 Beaumont Ave, Burlington, VT 05405 USA ; Department of Pathology, University of Vermont, 89 Beaumont Ave, Burlington, VT 05405 USA ; University of Vermont, Given Medical Building C317, Burlington, VT 05405 USA.

Published: April 2015

Sexually dimorphic traits arise through the combined effects of sex hormones and sex chromosomes on sex-biased gene expression, and experimental mouse models have been instrumental in determining their relative contribution in modulating sex differences. A role for the Y chromosome (ChrY) in mediating sex differences outside of development and reproduction has historically been overlooked due to its unusual genetic composition and the predominant testes-specific expression of ChrY-encoded genes. However, ample evidence now exists supporting ChrY as a mediator of other physiological traits in males, and genetic variation in ChrY has been linked to several diseases, including heart disease, cancer, and autoimmune diseases in experimental animal models, as well as humans. The genetic and molecular mechanisms by which ChrY modulates phenotypic variation in males remain unknown but may be a function of copy number variation between homologous X-Y multicopy genes driving differential gene expression. Here, we review the literature identifying an association between ChrY polymorphism and phenotypic variation and present the current evidence depicting the mammalian ChrY as a member of the regulatory genome in males and as a factor influencing paternal parent-of-origin effects in female offspring.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4392626PMC
http://dx.doi.org/10.1186/s13293-015-0024-zDOI Listing

Publication Analysis

Top Keywords

genetic variation
8
gene expression
8
sex differences
8
phenotypic variation
8
chry
6
genetic
4
variation phenotypic
4
phenotypic diversity
4
diversity health
4
health disease
4

Similar Publications

Deletion of metal transporter Zip14 reduces major histocompatibility complex II expression in murine small intestinal epithelial cells.

Proc Natl Acad Sci U S A

January 2025

Center for Nutritional Sciences, Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611.

Documented worldwide, impaired immunity is a cardinal signature resulting from loss of dietary zinc, an essential micronutrient. A steady supply of zinc to meet cellular requirements is regulated by an array of zinc transporters. Deletion of the transporter Zip14 (Slc39a14) in mice produced intestinal inflammation.

View Article and Find Full Text PDF

Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype.

View Article and Find Full Text PDF

Electron transfer in polysaccharide monooxygenase catalysis.

Proc Natl Acad Sci U S A

January 2025

California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720.

Polysaccharide monooxygenase (PMO) catalysis involves the chemically difficult hydroxylation of unactivated C-H bonds in carbohydrates. The reaction requires reducing equivalents and will utilize either oxygen or hydrogen peroxide as a cosubstrate. Two key mechanistic questions are addressed here: 1) How does the enzyme regulate the timely and tightly controlled electron delivery to the mononuclear copper active site, especially when bound substrate occludes the active site? and 2) How does this electron delivery differ when utilizing oxygen or hydrogen peroxide as a cosubstrate? Using a computational approach, potential paths of electron transfer (ET) to the active site copper ion were identified in a representative AA9 family PMO from (PMO9E).

View Article and Find Full Text PDF

Deep conservation complemented by novelty and innovation in the insect eye ground plan.

Proc Natl Acad Sci U S A

January 2025

Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093.

A spectacular diversity of forms and features allow species to thrive in different environments, yet some structures remain relatively unchanged. Insect compound eyes are easily recognizable despite dramatic differences in visual abilities across species. It is unknown whether distant insect species use similar or different mechanisms to pattern their eyes or what types of genetic changes produce diversity of form and function.

View Article and Find Full Text PDF

Computational-aided rational mutation design of pertuzumab to overcome active HER2 mutation S310F through antibody-drug conjugates.

Proc Natl Acad Sci U S A

January 2025

Laboratory of Precision Medicine and Biopharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.

Recurrent missense mutations in the human epidermal growth factor receptor 2 (HER2) have been identified across various human cancers. Among these mutations, the active S310F mutation in the HER2 extracellular domain stands out as not only oncogenic but also confers resistance to pertuzumab, an antibody drug widely used in clinical cancer therapy, by impeding its binding. In this study, we have successfully employed computational-aided rational design to undertake directed evolution of pertuzumab, resulting in the creation of an evolved pertuzumab variant named Ptz-SA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!