Exercise after spinal cord injury as an agent for neuroprotection, regeneration and rehabilitation.

Brain Res

Department of Neurobiology and Anatomy, Spinal Cord Research Center, Drexel University College of Medicine, 2900 Queen Lane, PA 19129, Philadelphia, United States. Electronic address:

Published: September 2015

Spinal cord injury (SCI) is a traumatic event from which there is limited recovery of function, despite the best efforts of many investigators to devise realistic therapeutic treatments. Partly this is due to the multifaceted nature of SCI, where there is considerable disarray and dysfunction secondary to the initial injury. Contributing to this secondary degeneration is neurotoxicity, vascular dysfunction, glial scarring, neuroinflammation, apoptosis and demyelination. It seems logical that addressing the need for neuroprotection, regeneration and rehabilitation will require different treatment strategies that may be applied at varied stages of the post-injury response. Here we focus on a single strategy, exercise/physical training, which appears to have multiple applications and benefits for an acute or chronic SCI. Exercise has been demonstrated to be advantageous at cellular and biochemical levels, as well as being of benefit for the whole animal or human subject. Data from our lab and others will be discussed to further elucidate the many positive aspects of implementing exercise following injury and to suggest that rehabilitation is not the sole target of a training regimen following SCI. This article is part of a Special Issue entitled SI: Spinal cord injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4540698PMC
http://dx.doi.org/10.1016/j.brainres.2015.03.052DOI Listing

Publication Analysis

Top Keywords

spinal cord
12
cord injury
12
neuroprotection regeneration
8
regeneration rehabilitation
8
injury
5
exercise spinal
4
injury agent
4
agent neuroprotection
4
rehabilitation spinal
4
sci
4

Similar Publications

User-Centered Design of Neuroprosthetics: Advancements and Limitations.

CNS Neurol Disord Drug Targets

January 2025

Biosciences and Bioengineering PhD Program, American University of Sharjah, UAE.

Neurological conditions resulting from severe spinal cord injuries, brain injuries, and other traumatic incidents often lead to the loss of essential bodily functions, including sensory and motor capabilities. Traditional prosthetic devices, though standard, have limitations in delivering the required dexterity and functionality. The advent of neuroprosthetics marks a paradigm shift, aiming to bridge the gap between prosthetic devices and the human nervous system.

View Article and Find Full Text PDF

Background: Bimanual motor training is an effective neurological rehabilitation strategy. However, its use has rarely been investigated in patients with paralysis caused by spinal cord injury (SCI). Therefore, we conducted a case study to investigate the effects of robot-assisted task-oriented bimanual training (RBMT) on upper limb function, activities of daily living, and movement-related sensorimotor activity in a patient with SCI.

View Article and Find Full Text PDF

This case report describes a 70-year-old male presenting with limb weakness, urinary retention and tandem cervical and lumbar spinal stenosis with complicating white cord syndrome, a rare reperfusion injury post decompression surgery. Initially admitted following an unwitnessed fall, the patient's neurological examination indicated that progressive weakness of the limbs and sensory loss etiology is cervical and lumbar spondylosis with severe spinal canal stenosis, confirmed by imaging. Due to rapid deterioration, he underwent C5 corpectomy, cervical decompression and fusion.

View Article and Find Full Text PDF

Introduction: Nerve injuries and resultant pain are common causes of emergency department (ED) visits in the United States. Injuries often occur either due to activity (ie sports related injury) or due to consumer products such as stairs or bedframes. We investigated the incidence of consumer product-related nerve injuries (CPNIs) in patients who presented to the ED in the United States.

View Article and Find Full Text PDF

Graphene oxide scaffolds promote functional improvements mediated by scaffold-invading axons in thoracic transected rats.

Bioact Mater

May 2025

Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain.

Millions of patients and their caretakers live and deal with the devastating consequences of spinal cord injury (SCI) worldwide. Despite outstanding advances in the field to both understand and tackle these pathologies, a cure for SCI patients, with their peculiar characteristics, is still a mirage. One of the most promising therapeutic strategies to date for these patients involves the use of epidural electrical stimulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!