The Gram-negative bacterium Escherichia coli is currently the most efficient and widely used prokaryotic host for recombinant protein and metabolite production. However, due to some limitations and to various interesting features of other Gram-negative bacteria efficient vector systems applicable to a broad range are desired. Basic building blocks for plasmid-based vectors include besides the need for a suitable selection marker in the first line a proper replication and maintenance system. In addition to these basic requirements, further elements are needed for Gram-negative bacteria beyond E. coli, such as Pseudomonas pudita, Ralstonia eutropha, Burkholderia glumae or Acinetobacter sp.. Established building blocks have to be adapted and new building blocks providing the desired functions need to be identified and exploited. This minireview addresses so far described and used genetic elements for broad host range replication, efficient plasmid maintenance, and conjugative plasmid transfer as well as expression elements and protein secretion signals. The industrially important bacterium R. eutropha H16 was chosen as a model organism to provide specific data on the effectivity and utility of building blocks based on such genetic elements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nbt.2015.03.015 | DOI Listing |
J Public Health Afr
December 2024
Department of Global Health, University of Washington, Seattle, United States of America.
Background: Many low- and middle-income countries (LMICs) face the daunting task of digitising, maturing and deciding where to invest in digital health systems.
Aim: Describing the facilitators and barriers to conducting digital health maturity assessments and how health leaders can prioritise the assessments.
Setting: eHealth leaders from 10 African countries, working or supporting Ministries of Health's digital health and participating in the eHealth Leaders' Forum from July 2023 to September 2023.
In this review we have compiled multicomponent reactions (MCRs) that produce cyclic structures. We have covered articles reported since 2019 to showcase the recent advances in this area. In contrast to other available reviews on this topic, we focus specifically on MCRs with strong prospects in medicinal chemistry.
View Article and Find Full Text PDFJ Gastric Cancer
January 2025
Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
Endoscopic submucosal dissection is performed in cases of early gastric cancer, where the risk of lymph node metastasis (LNM) is expected to be negligible, and 12%-21% of these patients are deemed to have undergone non-curative resections based on pathological criteria. In such cases, decisions regarding additional treatments must be made to maximize curability, depending on the anticipated LNM risk. Well-established risk factors for LNM include lymphatic invasion, vascular invasion, deep submucosal invasion, positive vertical margins, and larger tumor size.
View Article and Find Full Text PDFSci Rep
January 2025
Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, Veszprém H, 8200, Veszprém, Hungary.
This study endeavors to tackle the energy requirements of the building sector by employing passive design strategies. However, there exists a dearth of comprehension regarding the energy efficiency performance of foamed alkali-activated materials. To bridge this research gap, the study proposes a solution in the form of a thermally proficient wall material crafted from ceramic tile dust (CTD), class C fly ash (FA), and Ground Granulated Blast-Furnace Slag (GGBS), all of which are industrial by-products.
View Article and Find Full Text PDFCommun Chem
January 2025
National Institute of Chemistry, Hajdrihova 19, SI-1001, Ljubljana, Slovenia.
Iminophosphoranes with the general formula (RP═NR') have great potential in synthetic chemistry as valuable precursors/intermediates in organic synthesis or as building blocks for various organic compounds. However, the synthetic approaches and conditions to prepare iminophosphoranes are still poorly understood, limiting the utility of this chemistry for organic materials. In this article, a simple and efficient synthesis of previously unattainable poly(arylene iminophosphoranes) is reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!