Deletion of HAX1 in mice causes a severe reduction in the numbers of lymphocytes in the bone marrow and in the spleen. Additionally, B220(+) B progenitor cells in the bone marrow are reduced, suggesting an important function of HAX1 in B cell development. HAX1 is thought to play a protective role in apoptotic processes; therefore, we investigated the role of HAX1 in bone marrow B progenitor cells and splenic B cells. We did not observe an effect on the survival of Hax1(-/-) bone marrow cells but detected enhanced survival of splenic Hax1(-/-) B cells upon in vitro starvation/growth-factor withdrawal. To explain this apparent inconsistency with previous reports of HAX1 function, we also studied the B cell receptor (BCR)-induced apoptosis of IgM-stimulated splenic naïve B cells and found that apoptosis decreased in these cells. We further found impaired internalization of the BCR from Hax1(-/-) splenic B cells after IgM crosslinking; this impaired internalization may result in decreased BCR signaling and, consequently, decreased BCR-mediated apoptosis. We measured HAX1 binding to the cytoplasmic domains of different Ig subtypes and identified KVKWI(V)F as the putative binding motif for HAX1 within the cytoplasmic domains. Because this motif can be found in almost all Ig subtypes, it is likely that HAX1 plays a general role in BCR-mediated internalization events and BCR-mediated apoptosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4947813PMC
http://dx.doi.org/10.1038/cmi.2015.18DOI Listing

Publication Analysis

Top Keywords

bone marrow
16
bcr-mediated apoptosis
12
hax1
9
cells
8
progenitor cells
8
splenic cells
8
impaired internalization
8
cytoplasmic domains
8
apoptosis
5
hax1 deletion
4

Similar Publications

Cellular therapy is a promising treatment option for Peripheral Arterial Disease (PAD). Different cell types can be used to regenerate and repair tissues affected by PAD. Many studies have proposed the use of stem cells, such as mesenchymal stem cells, or even mononuclear cells isolated from peripheral blood or bone marrow, to treat PAD.

View Article and Find Full Text PDF

Cancer and its diverse variations pose one of the most significant threats to human health and well-being. One of the most aggressive forms is blood cancer, originating from bone marrow cells and disrupting the production of normal blood cells. The incidence of blood cancer is steadily increasing, driven by both genetic and environmental factors.

View Article and Find Full Text PDF

Hematopoietic stem cell transplantation (HSCT) is a potentially curative therapy for patients with hematologic malignancies and certain solid tumors and nonmalignant hematologic conditions. Both acute kidney injury (AKI) and chronic kidney disease (CKD) occur commonly after HSCT and are associated with significant morbidity and mortality. AKI and CKD in this setting may result from direct effects of the transplant or be caused by pretransplant bone marrow conditioning regimens and/or nephrotoxic agents administered in the post-transplant period.

View Article and Find Full Text PDF

Importance: Although sharing care with local oncologists after allogeneic hematopoietic cell transplantation (HCT) has been proposed for patients living far from HCT centers, it is not known whether a shared strategy is safe or improves patient quality of life (QOL).

Objective: To determine the efficacy and safety of sharing follow-up care after HCT between the HCT specialty center and local oncologists.

Design, Setting, And Participants: This was a multicenter collaborative randomized clinical trial of patients undergoing HCT at Dana-Farber Cancer Institute (DFCI)-a high volume HCT center in Boston (Massachusetts)-and 8 local oncology practices.

View Article and Find Full Text PDF

'Nomadic' Hematopoietic Stem Cells Navigate the Embryonic Landscape.

Stem Cell Rev Rep

January 2025

Department of Integrative Biology, Gene Therapy Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632 014, India.

Hematopoietic stem cells are a unique population of tissue-resident multipotent cells with an extensive ability to self-renew and regenerate the entire lineage of differentiated blood cells. Stem cells reside in a highly specialized microenvironment with surrounding supporting cells, forming a complex and dynamic network to preserve and maintain their function. The survival, activation, and quiescence of stem cells are largely influenced by niche-derived signals, with aging niche contributing to a decline in stem cell function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!