AI Article Synopsis

Article Abstract

Herein, we report on a new (19)F MRI probe for the detection and imaging of H2O2. Our designed 2-fluorophenylboronic acid-based (19)F probe promptly reacted with H2O2 to produce 2-fluorophenol via boronic acid oxidation. The accompanying (19)F chemical-shift change reached 31 ppm under our experimental conditions. Such a large chemical-shift change allowed for the imaging of H2O2 by (19)F chemical-shift-selective MRI.

Download full-text PDF

Source
http://dx.doi.org/10.2116/analsci.31.331DOI Listing

Publication Analysis

Top Keywords

chemical-shift change
12
acid-based 19f
8
19f mri
8
mri probe
8
probe detection
8
detection imaging
8
large chemical-shift
8
imaging h2o2
8
19f
5
phenylboronic acid-based
4

Similar Publications

A thermally polarized, dissolved-phase Xe phantom for quality-control and multisite comparisons of gas-exchange imaging.

J Magn Reson

January 2025

Center for Pulmonary Imaging Research (CPIR), Division of Pulmonary Medicine Cincinnati Children's Hospital Medical Center Cincinnati OH USA; Department of Pediatrics, University of Cincinnati OH USA; Department of Biomedical Engineering, University of Cincinnati OH USA; Imaging Research Center (IRC), Department of Radiology Cincinnati Children's Hospital Medical Center Cincinnati OH USA. Electronic address:

Harmonizing and validating Xe gas exchange imaging across multiple sites is hampered by a lack of a quantitative standard that 1) displays the unique spectral properties of Xe observed from human subjects in vivo and 2) has short enough T times to enable practical imaging. This work describes and demonstrates the development of two dissolved-phase, thermally polarized phantoms that mimic the in-vivo, red blood cell and membrane resonances of Xe dissolved in human lungs. Following optimization, combinations of two common organic solvents, acetone and dimethyl sulfoxide, resulted in two in-vivo-like dissolved-phase Xe phantoms yielding chemical shifts of 212.

View Article and Find Full Text PDF

The tau protein misfolds in neurodegenerative diseases such as Alzheimer's disease (AD). These pathological tau aggregates are associated with neuronal membranes, but molecular structural information about how disease-like tau fibrils interact with the lipid membrane is scarce. Here, we use solid-state NMR to investigate the structure of a tau construct bearing four AD-relevant phospho-mimetic mutations (4E tau) with cholesterol-containing high-curvature lipid membranes, which mimic the membrane of synaptic vesicles in neurons.

View Article and Find Full Text PDF

Hydronium Ions Are Less Excluded from Hydrophobic Polymer-Water Interfaces than Hydroxide Ions.

J Phys Chem B

January 2025

Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

The cloud point temperatures of aqueous poly(-isopropylacrylamide) (PNIPAM) and poly(ethylene) oxide (PEO) solutions were measured from pH 1.0 to pH 13.0 at a constant ionic strength of 100 mM.

View Article and Find Full Text PDF

In this computational work we study complexes with two equivalent intermolecular hydrogen bonds formed between trimethyl phosphine oxide and two identical proton donors ("twin" hydrogen bonds) for a set of 70 proton donor molecules. The changes in the phosphorus chemical shift and stretching frequency of the PO group upon complexation correlate quite well with the total strength of two hydrogen bonds. A set of explicit numerical dependences is proposed for assessing interatomic distances and hydrogen bond strengths from spectral data.

View Article and Find Full Text PDF

Curcumaones A-N, sesquiterpenes from the secondary rhizomes of Curcuma wenyujin.

Phytochemistry

December 2024

School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, PR China. Electronic address:

Fourteen undescribed sesquiterpenes, named curcumaones A-N (1-14), as well as forty-four (15-58) known ones, were isolated from the secondary rhizomes of Curcuma wenyujin. The structures and absolute configurations of 1-14 were elucidated based on NMR spectroscopic analyses, high resolution electrospray ionization mass spectroscopy (HRESIMS) data and electronic circular dichroism (ECD) spectral analysis. Among these, five sesquiterpenes with the peroxide linkage (1-5) were obtained and the change of chemical shift between the α-C connecting the peroxide linkage and the oxygen atom has been discussed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!