Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Genetically encoded fluorescent and bioluminescent reporters are now widely used for imaging and understanding of intracellular signaling in response to extracellular stimuli in real time in single living cells. Primary cultures are a valuable tool, and are often preferred over transformed or immortalized cell lines, since they are biologically more relevant and important in biomedical research and therapeutic development. To incorporate genetically encoded reporters into the primary culture of non-dividing cells, such as mouse or human pancreatic acinar cells, is not an easy task. This short review discusses the different methods available to transfect cell lines and primary cultures while especially focusing on pancreatic acinar cells with genetically encoded optical reporters to advance knowledge of the pathophysiology of pancreatitis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2116/analsci.31.293 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!