Effects of two whole-grain barley varieties on caecal SCFA, gut microbiota and plasma inflammatory markers in rats consuming low- and high-fat diets.

Br J Nutr

Food for Health Science Centre, Department of Food Technology, Engineering and Nutrition, Kemicentrum, Lund University,P.O. Box 124,SE-221 00Lund,Sweden.

Published: May 2015

Mixed-linkage β-glucans are fermented by the colon microbiota that give rise to SCFA. Propionic and butyric acids have been found to play an important role in colonic health, as well as they may have extraintestinal metabolic effects. The aim of the present study was to investigate how two whole-grain barley varieties differing in dietary fibre and β-glucan content affected caecal SCFA, gut microbiota and some plasma inflammatory markers in rats consuming low-fat (LF) or high-fat (HF) diets. Barley increased the caecal pool of SCFA in rats fed the LF and HF diets compared with those fed the control diet, and the effect was generally dependent on fibre content, an exception was butyric acid in the LF setting. Furthermore, whole-grain barley reduced plasma lipopolysaccharide-binding protein and monocyte chemoattractant protein-1, increased the caecal abundance of Lactobacillus and decreased the Bacteroides fragilis group, but increased the number of Bifidobacterium only when dietary fat was consumed at a low level. Fat content influenced the effects of barley: rats fed the HF diets had a higher caecal pool of acetic and propionic acids, higher concentrations of amino acids and higher amounts of lipids in the portal plasma and liver than rats fed the LF diets; however, less amounts of butyric acid were generally formed. Interestingly, there was an increase in the caecal abundance of Akkermansia and the caecal pool of succinic acid, and a decrease in the proportion of Bifidobacterium and the Clostridium leptum group. In summary, whole-grain barley decreased HF diet-induced inflammation, which was possibly related to the formation of SCFA and changes in microbiota composition. High β-glucan content in the diet was associated with reduced plasma cholesterol levels.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0007114515000793DOI Listing

Publication Analysis

Top Keywords

whole-grain barley
16
caecal pool
12
rats fed
12
fed diets
12
barley varieties
8
caecal scfa
8
scfa gut
8
gut microbiota
8
microbiota plasma
8
plasma inflammatory
8

Similar Publications

Sustainable nutrition and food production involve dietary habits and farming systems which are eco-friendly, created to provide highly nutritious staple crops which could serve as a functional food at the same time. This research sought to provide a comprehensive analysis of whole-grain cereals, and some ancient grains toward important macro- (protein), micro-nutrients (mineral elements), and bioactive compounds, such as dietary fiber (arabinoxylan and β-glucan) and antioxidants (phytic acid, total glutathione, yellow pigment, and phenolic compounds) to provide functionality in a sustainable diet. Genotypes, such as durum wheat, triticale, spelt, emmer wheat, and barley, could be considered important and sustainable sources of protein (ranging 11.

View Article and Find Full Text PDF

The mechanisms of thermal processing techniques on modifying structural, functional and flour-processing properties of whole-grain highland barley.

Food Chem

December 2024

Glycomics and Glycan Bioengineering Research Center, College of Food Science &Technology, Nanjing Agricultural University, Nanjing 210095, PR China. Electronic address:

The mechanisms underlying three thermal processing methods, namely hot-air drying, microwave irradiation, and heat fluidization, were systematically investigated to evaluate their effects on the structural, functional, and flour-processing properties of whole-grain highland barley. Starch granules were partially damaged when treated with hot-air drying and microwave irradiation. However, these granules were predominantly aggregated or encapsulated in proteins following heat fluidization.

View Article and Find Full Text PDF

The toxic effects of tetracycline and glyphosate on hulless barley and its environment, as well as their interrelationship, remain poorly understood. The present study aimed to identify biomarkers reflective of tetracycline and glyphosate toxicity, examine root damage and rhizosphere bacterial communities throughout the growth cycle, and assess the final grain quality. Results indicated that the hydrogen peroxide (HO) content in the underground parts of barley could serve as a sensitive biomarker for detecting tetracycline and glyphosate toxicity in barley.

View Article and Find Full Text PDF

A high-fat diet (HFD) is associated with various adverse health outcomes, including cognitive impairment and an elevated risk of neurodegenerative conditions. This relationship is partially attributed to the influence of an HFD on the gut microbiota. The objective of this research was to evaluate the neuroprotective benefits of co-fermented black barley and quinoa with (FG) against cognitive impairments triggered by an HFD and to investigate the microbiota-gut-brain axis mechanisms involved.

View Article and Find Full Text PDF

Protective and Detoxifying Effects of Resveratrol on Zearalenone-Mediated Toxicity: A Review.

Int J Mol Sci

October 2024

College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, Luoyang 471023, China.

Zearalenone (ZEA) is a mycotoxin produced by Fusarium spp. fungi and is widely found in moldy corn, wheat, barley, and other grains. ZEA is distributed to the whole body via blood circulation after metabolic transformation in animals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!