Download full-text PDF |
Source |
---|
Laser absorption spectroscopy (LAS) is a well-established measurement technique for quantitative chemical speciation in a combustion environment. However, LAS measurement of nitric oxide (NO) in ammonia flames has never been reported in the literature. This is despite the community's recent strong interest in carbon-neutral ammonia combustion and the associated NO formation problem.
View Article and Find Full Text PDFWe demonstrate a broadband photothermal spectroscopy in the mid-infrared region using a quantum cascade laser frequency comb operating between ∼7.7 and ∼8.2 µm covering a frequency range of ∼70 cm.
View Article and Find Full Text PDFMid-infrared dual-comb spectroscopy offers significant advantages by combining the high sensitivity of mid-infrared spectroscopy with the high spectral resolution and rapid acquisition of the dual-comb method. However, its effective resolution, constrained by the inherent comb line spacing, hinders its ability to resolve narrow absorption features, common in critical applications such as sub-Doppler spectroscopy, low-pressure gas analysis, and construction of the atmospheric profile. To address this challenge, we present a synchronous offset frequency tuning method for the mid-infrared dual-comb system to improve effective resolution far beyond comb line spacing.
View Article and Find Full Text PDFElectric-field oscillations are now experimentally accessible in the THz-to-PHz frequency range. Their measurement delivers the most comprehensive information content attainable by optical spectroscopy - if performed with high sensitivity. Yet, the trade-off between bandwidth and efficiency associated with the nonlinear mixing necessary for field sampling has so far strongly restricted sensitivity in applications such as field-resolved spectroscopy of molecular vibrations.
View Article and Find Full Text PDFA 2.6-fold spectral broadening of mid-infrared femtosecond µJ-level pulses has been achieved using an unfolded multi-pass configuration of germanium plates and zinc selenide lenses. This method maintains a throughput higher than 60% while preserving the spatial quality and the temporal duration of the input beam.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!