Simultaneous degradation of toxic refractory organic pesticide and bioelectricity generation using a soil microbial fuel cell.

Bioresour Technol

School of Energy and Environment, Southeast University, Nanjing 210096, China. Electronic address:

Published: February 2016

In this study, the soil microbial fuel cells (MFCs) were constructed in the topsoil contaminated with toxic refractory organic pesticide, hexachlorobenzene (HCB). The performance of electricity generation and HCB degradation in the soil-MFCs were investigated. The HCB degradation pathway was analyzed based on the determination of degradation products and intermediates. Experimental results showed that the HCB removal efficiencies in the three groups (soil MFCs group, open circuit control group and no adding anaerobic sludge blank group) were 71.15%, 52.49% and 38.92%, respectively. The highest detected power density was 77.5 mW/m(2) at the external resistance of 1000 Ω. HCB was degraded via the reductive dechlorination pathway in the soil MFC under anaerobic condition. The existence of the anode promoted electrogenic bacteria to provide more electrons to increase the metabolic reactions rates of anaerobic bacteria was the main way which could promote the removal efficiencies of HCB in soil MFC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2015.03.148DOI Listing

Publication Analysis

Top Keywords

toxic refractory
8
refractory organic
8
organic pesticide
8
soil microbial
8
microbial fuel
8
hcb degradation
8
removal efficiencies
8
soil mfc
8
hcb
6
soil
5

Similar Publications

Simultaneous Copper and EDTA Ligands Recovery from Electroless Effluent with Metallic Copper and Formaldehyde.

Environ Sci Technol

January 2025

Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China.

The traditional treatment of toxic and refractory copper(II)-ethylenediaminetetraacetic acid chelate (Cu(II)-EDTA) in electroless effluents often generates hazardous waste and secondary nitrogen-containing pollutants without maximizing the resource recovery. This study demonstrates a facile strategy to simultaneously recover Cu and EDTA ligands from Cu(II)-EDTA electroless effluent with commercially available metallic Cu and formaldehyde. In this strategy, metallic Cu is used to activate formaldehyde, a prevalent yet often overlooked cocontaminant in Cu(II)-EDTA effluents, to produce highly reductive hydrogen radical (H), which in situ decomplex Cu(II)-EDTA, reduces the central Cu(II) into metallic Cu, and release EDTA ligand.

View Article and Find Full Text PDF

Performance, kinetics, and mechanism of 1,2,3-trimethylbenzene biodegradation by a newly isolated marine microalga.

J Environ Manage

January 2025

Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.

Article Synopsis
  • Recent marine pollution concerns revolve around the accidental spills of toxic C9 aromatics, particularly 1,2,3-trimethylbenzene (1,2,3-TMB), due to its high toxicity and resistance to degradation.
  • A marine diatom, Chaetoceros sp. QG-1, was isolated from Quangang, China, and demonstrated the highest degradation efficiency of 1,2,3-TMB at a concentration of 5 mg/L.
  • The study identified the degradation process, where 1,2,3-TMB is converted into less harmful compounds, involving key enzymes like 2OG Fe(II) oxygenase, thus supporting bioremediation efforts in polluted marine environments
View Article and Find Full Text PDF

Background: Multiple myeloma (MM) is an incurable plasma cell malignancy with increasing global incidence. Chimeric antigen receptor (CAR) T-cell therapy targeting BCMA has shown efficacy in relapsed or refractory MM, but it faces resistance due to antigen loss and the tumor microenvironment. Bispecific T-cell engaging (BITE) antibodies also encounter clinical challenges, including short half-lives requiring continuous infusion and potential toxicities.

View Article and Find Full Text PDF

Purpose: More active high-dose chemotherapy (HDC) regimens are needed for autologous stem-cell transplantation (ASCT) for refractory lymphomas. Seeking HDC enhancement with a poly(ADP-ribose) polymerase (PARP) inhibitor, we observed marked synergy between olaparib and vorinostat/gemcitabine/busulfan/melphalan (GemBuMel) against lymphoma cell lines, mediated by inhibition of DNA damage repair. Our preclinical work led us to clinically study olaparib/vorinostat/GemBuMel with ASCT.

View Article and Find Full Text PDF

Key role of persistent free radicals in soil for persulfate activation: impacts on benzo[]pyrene degradation.

Environ Sci Process Impacts

January 2025

Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.

Environmentally persistent free radicals (EPFRs) have been widely detected in polycyclic aromatic hydrocarbon (PAH)-contaminated soils, but the activation of persulfate by inherent EPFRs in PAH-contaminated soil for the transformation of PAHs remains unclear. In the present study, benzo[]pyrene (B[]P) was selected as a representative PAH and its transformation in a persulfate/B[]P-contaminated soil system was studied without the addition of any other activator. Results indicated that EPFRs in the soil activated persulfate to produce reactive oxygen species (ROS) and degraded B[]P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!