Lectin receptor-like kinases (LecRLKs) are members of RLK family composed of lectin-like extracellular recognition domain, transmembrane domain and cytoplasmic kinase domain. LecRLKs are plasma membrane proteins believed to be involved in signal transduction. However, most of the members of the protein family even in plants have not been functionally well characterized. Herein, we show that Pisum sativum LecRLK (PsLecRLK) localized in plasma membrane systems and/or other regions of the cell and its transcript upregulated under salinity stress. Overexpression of PsLecRLK in transgenic tobacco plants confers salinity stress tolerance by alleviating both the ionic as well the osmotic component of salinity stress. The transgenic plants show better tissue compartmentalization of Na(+) and higher ROS scavenging activity which probably results in lower membrane damage, improved growth and yield maintenance even under salinity stress. Also, expression of several genes involved in cellular homeostasis is perturbed by PsLecRLK overexpression. Alleviation of osmotic and ionic components of salinity stress along with reduced oxidative damage and upregulation of stress-responsive genes in transgenic plants under salinity stress conditions could be possible mechanism facilitating enhanced stress tolerance. This study presents PsLecRLK as a promising candidate for crop improvement and also opens up new avenue to investigate its signalling pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11103-015-0319-9 | DOI Listing |
Mol Biotechnol
December 2024
Department of Biochemistry, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India.
Staphylococcus warneri is a gram-positive mesophilic bacterium, resilient to extreme environmental conditions. To unravel its Osmotic Tolerance Response (OTR), we conducted proteomic and metabolomic analyses under drought (PEG) and salt (NaCl) stresses. Our findings revealed 1340 differentially expressed proteins (DEPs) across all treatments.
View Article and Find Full Text PDFPlant Cell Rep
December 2024
Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510000, Guangdong, China.
A total of 24 genes of vacuolar H-translocating pyrophosphatases H-PPases (VPP) genes were identified in Saccharum spontaneum AP85-441 and the ScVPP1-overexpressed Arabidopsis plants conferred salt tolerance. The vital role of vacuolar H-translocating pyrophosphatases H-PPases (VPP) genes involved in plants in response to abiotic stresses. However, the understanding of VPP functions in sugarcane remained unclear.
View Article and Find Full Text PDFJ Clin Res Pediatr Endocrinol
December 2024
Department of Pediatric Endocrinology and Diabetes, Derince Research and Training Hospital, Kocaeli, Turkey.
Adrenal insufficiency (AI) is defined as the inability of the adrenal cortex to produce adequate amounts of glucocorticoids and/or mineralocorticoids. As these hormones have important roles in water-salt balance and energy homeostasis, AI is a serious and potentially life-threatening condition. Glucocorticoid replacement therapy is vital in all cases of AI.
View Article and Find Full Text PDFJ Clin Res Pediatr Endocrinol
December 2024
Department of Pediatric Endocrinology, Ankara University Faculty of Medicine, Ankara, Turkiye.
Congenital adrenal hyperplasia (CAH) is an autosomal recessive disease caused by the deficiency of one of the enzymes involved in cortisol synthesis. More than 95% of the cases occur as a result of defects in the gene encoding 21-hydroxylase (CYP21A2). 21 hydroxylase deficiency has been divided into classical and non-classical forms.
View Article and Find Full Text PDFFront Microbiol
December 2024
Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
Salt is a primary factor limiting the utilization of saline lands in coastal beach areas, with rhizosphere microorganisms playing a crucial role in enhancing crop stress resistance and exhibiting high sensitivity to environmental changes. Rice ( L.) is the preferred crop for reclaiming salinized soils.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!