Autonomous circadian oscillations arise from transcriptional-translational feedback loops of core clock components. The period of a circadian oscillator is relatively insensitive to changes in nutrients (e.g., glucose), which is referred to as "nutrient compensation". Recently, a transcription repressor, CSP-1, was identified as a component of the circadian system in Neurospora crassa. The transcription of csp-1 is under the circadian regulation. Intriguingly, CSP-1 represses the circadian transcription factor, WC-1, forming a negative feedback loop that can influence the core oscillator. This feedback mechanism is suggested to maintain the circadian period in a wide range of glucose concentrations. In this report, we constructed a mathematical model of the Neurospora circadian clock incorporating the above WC-1/CSP-1 feedback loop, and investigated molecular mechanisms of glucose compensation. Our model shows that glucose compensation exists within a narrow range of parameter space where the activation rates of csp-1 and wc-1 are balanced with each other, and simulates loss of glucose compensation in csp-1 mutants. More importantly, we experimentally validated rhythmic oscillations of the wc-1 gene expression and loss of glucose compensation in the wc-1(ov) mutant as predicted in the model. Furthermore, our stochastic simulations demonstrate that the CSP-1-dependent negative feedback loop functions in glucose compensation, but does not enhance the overall robustness of oscillations against molecular noise. Our work highlights predictive modeling of circadian clock machinery and experimental validations employing Neurospora and brings a deeper understanding of molecular mechanisms of glucose compensation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4390811 | PMC |
http://dx.doi.org/10.1016/j.bpj.2015.01.043 | DOI Listing |
Stem Cell Res Ther
December 2024
Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.
Background: Pluripotent cell-derived islet replacement therapy offers promise for treating Type 1 diabetes (T1D), but concerns about uncontrolled cell proliferation and tumorigenicity present significant safety challenges. To address the safety concern, this study aims to establish a proof-of-concept for a glucose-responsive, insulin-secreting cell line integrated with a built-in FailSafe kill-switch.
Method: We generated β cell-induced progenitor-like cells (βiPLCs) from primary mouse pancreatic β cells through interrupted reprogramming.
Skelet Muscle
December 2024
Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
Background: Insulin resistance and type 2 diabetes impair cellular regeneration in multiple tissues including skeletal muscle. The molecular basis for this impairment is largely unknown. Glucose uptake via glucose transporter GLUT4 is impaired in insulin resistance.
View Article and Find Full Text PDFDiabetes Ther
December 2024
Bayer AG, Berlin, Germany.
Introduction: The clinical landscape for the treatment of patients with chronic kidney disease (CKD) and type 2 diabetes (T2D) is rapidly evolving. As part of the FOUNTAIN platform (NCT05526157; EUPAS48148), we described and compared cohorts of adult patients with CKD and T2D initiating a sodium-glucose cotransporter 2 inhibitor (SGLT2i) before the launch of finerenone in Europe, Japan, and the United States (US).
Methods: This was a multinational, multi-cohort study of patients with T2D in five data sources: the Danish National Health Registers (DNHR) (Denmark), PHARMO Data Network (The Netherlands), Valencia Health System Integrated Database (VID) (Spain), Japan Chronic Kidney Disease Database Extension (J-CKD-DB-Ex) (Japan), and Optum's de-identified Clinformatics Data Mart Database (CDM) (US).
Nutrients
November 2024
Department of Neonatology, Wroclaw Medical University, 50-367 Wrocław, Poland.
Background: Gestational diabetes mellitus (GDM) is one of the most prevalent complications associated with pregnancy, exhibiting a gradual rise in prevalence worldwide. Given the potential for numerous short- and long-term complications for both mother and child, patients diagnosed with GDM require individualised treatment to compensate for metabolic abnormalities and ultimately reduce the risk of the known adverse consequences of impaired glucose tolerance.
Methods And Results: The manuscript presents a summary of the current knowledge on changes in maternal metabolism during physiological pregnancy and pregnancy complicated by gestational diabetes.
Recent studies have revealed a role for zinc in insulin secretion and glucose homeostasis. Randomized placebo-controlled zinc supplementation trials have demonstrated improved glycemic traits in patients with type II diabetes (T2D). Moreover, rare loss-of-function variants in the zinc efflux transporter reduce T2D risk.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!