As the major structural constituent of the cytoskeleton, microtubules (MTs) serve a variety of biological functions that range from facilitating organelle transport to maintaining the mechanical integrity of the cell. Neuronal MTs exhibit a distinct configuration, hexagonally packed bundles of MT filaments, interconnected by MT-associated protein (MAP) tau. Building on our previous work on mechanical response of axonal MT bundles under uniaxial tension, this study is focused on exploring the compression scenarios. Intracellular MTs carry a large fraction of the compressive loads sensed by the cell and therefore, like any other column-like structure, are prone to substantial bending and buckling. Various biological activities, e.g., actomyosin contractility and many pathological conditions are driven or followed by bending, looping, and buckling of MT filaments. The coarse-grained model previously developed in our lab has been used to study the mechanical behavior of individual and bundled in vivo MT filaments under uniaxial compression. Both configurations show tip-localized, decaying, and short-wavelength buckling. This behavior highlights the role of the surrounding cytoplasm and MAP tau on MT buckling behavior, which allows MT filaments to bear much larger compressive forces. It is observed that MAP tau interconnections improve this effect by a factor of two. The enhanced ability of MT bundles to damp buckling waves relative to individual MT filaments, may be interpreted as a self-defense mechanism because it helps axonal MTs to endure harsher environments while maintaining their function. The results indicate that MT filaments in a bundle do not buckle simultaneously implying that the applied stress is not equally shared among the MT filaments, that is a consequence of the nonuniform distribution of MAP tau proteins along the bundle length. Furthermore, from a pathological perspective, it is observed that axonal MT bundles are more vulnerable to failure in compression than tension.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4390818 | PMC |
http://dx.doi.org/10.1016/j.bpj.2015.01.030 | DOI Listing |
Nat Commun
January 2025
European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands.
While the effect of amplification-induced oncogene expression in cancer is known, the impact of copy-number gains on "bystander" genes is less understood. We create a comprehensive map of dosage compensation in cancer by integrating expression and copy number profiles from over 8000 tumors in The Cancer Genome Atlas and cell lines from the Cancer Cell Line Encyclopedia. Additionally, we analyze 17 cancer open reading frame screens to identify genes toxic to cancer cells when overexpressed.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
January 2025
College of Life and Health Sciences, Chubu University, Kasugai, Japan.
Persistent stressful situations can have detrimental cardiovascular effects; however, effects on the blood pressure (BP) response to exercise have not been fully examined. This study investigated the impact of a 2-week stressful situation on the exercise pressor response. Eight healthy male university paramedic trainees underwent a 2-week paramedic hospital training and a control period study.
View Article and Find Full Text PDFStructure
January 2025
Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA. Electronic address:
Tau plays an important role in modulating axonal microtubules in neurons, while intracellular tau aggregates are found in many neurodegenerative disorders. Tubulin binding sites are found in tau's proline-rich region (PRR), microtubule binding repeats (MTBRs), and pseudo-repeat (R'). Tau phosphorylation sites, which cluster with high frequency within the PRR, regulate tubulin interactions and correlates with disease.
View Article and Find Full Text PDFTransl Androl Urol
December 2024
University of Washington, Seattle, WA, USA.
Background: Sperm extraction by Microscopic Testicular Sperm Extraction (microTESE) has become the standard of care for sperm retrieval (SR) in men with non-obstructive azoospermia (NOA) but is costly and has a 40-50% chance of failure. Fine needle aspiration mapping (FNAM) can be performed prior to microTESE as a predictor of success to reduce the likelihood of failure to retrieve sperm but there is limited evidence that directly compares these methods. The objective of this study was to compare success rate of SR, pregnancy, and live birth rates in men who underwent upfront microTESE versus FNAM.
View Article and Find Full Text PDFDNA Repair (Amst)
January 2025
School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv 6997801, Israel; Department of Biomedical Engineering, Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel. Electronic address:
Quantitative genomic mapping of DNA damage may provide insights into the underlying mechanisms of damage and repair. Sequencing based approaches are bound to the limitations of PCR amplification bias and read length which hamper both the accurate quantitation of damage events and the ability to map them to structurally complex genomic regions. Optical Genome mapping in arrays of parallel nanochannels allows physical extension and genetic profiling of millions of long genomic DNA fragments, and has matured to clinical utility for characterization of complex structural aberrations in cancer genomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!