Programmed cell death is essential for plant development and stress adaptation. A detailed understanding of the signal transduction pathways that regulate plant programmed cell death requires identification of the underpinning protein networks. Here, we have used a protagonist and antagonist of programmed cell death triggered by fumonisin B1 as probes to identify key cell death regulatory proteins in Arabidopsis. Our hypothesis was that changes in the abundance of cell death-regulatory proteins induced by the protagonist should be blocked or attenuated by concurrent treatment with the antagonist. We focused on proteins present in the mobile phase of the extracellular matrix on the basis that they are important for cell-cell communications during growth and stress-adaptive responses. Salicylic acid, a plant hormone that promotes programmed cell death, and exogenous ATP, which can block fumonisin B1-induced cell death, were used to treat Arabidopsis cell suspension cultures prior to isobaric-tagged relative and absolute quantitation analysis of secreted proteins. A total of 33 proteins, whose response to salicylic acid was suppressed by ATP, were identified as putative cell death-regulatory proteins. Among these was CYCLASE1, which was selected for further analysis using reverse genetics. Plants in which CYCLASE1 gene expression was knocked out by insertion of a transfer-DNA sequence manifested dramatically increased cell death when exposed to fumonisin B1 or a bacterial pathogen that triggers the defensive hypersensitive cell death. Although pathogen inoculation altered CYCLASE1 gene expression, multiplication of bacterial pathogens was indistinguishable between wild type and CYCLASE1 knockout plants. However, remarkably severe chlorosis symptoms developed on gene knockout plants in response to inoculation with either a virulent bacterial pathogen or a disabled mutant that is incapable of causing disease in wild type plants. These results show that CYCLASE1, which had no known function hitherto, is a negative regulator of cell death and regulates pathogen-induced symptom development in Arabidopsis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4458720 | PMC |
http://dx.doi.org/10.1074/mcp.M114.045054 | DOI Listing |
Orphanet J Rare Dis
January 2025
Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan.
Background: Transient receptor potential cation channel subfamily V member 2 (TRPV2) functions as a stretch-sensitive calcium channel, with overexpression in the sarcolemma of skeletal and cardiac myocytes leading to detrimental calcium influx and triggering muscle degeneration. In our previous pilot study, we showed that tranilast, a TRPV2 inhibitor, reduced brain natriuretic peptide levels in two patients with muscular dystrophy and advanced heart failure. Building on this, we performed a single-arm, open-label, multicenter study herein to evaluate the safety and efficacy of tranilast in the treatment of advanced heart failure in patients with muscular dystrophy.
View Article and Find Full Text PDFBMC Pregnancy Childbirth
January 2025
School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China.
Background: Intrahepatic cholestasis of pregnancy (ICP) is the most common liver disorder associated with pregnancy and is usually diagnosed based on high serum bile acid. However, the pathogenesis of ICP is unclear. Ferroptosis has been reported as an iron-dependent mechanism of cell death.
View Article and Find Full Text PDFCell Biol Toxicol
January 2025
Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning, China.
Background: Microsatellite instability-high (MSI-H) metastatic colorectal cancer (CRC) patients are the dominant population in immune checkpoint blockade treatments, while more than half of them could not benefit from single-agent immunotherapy. We tried to identify the biomarker of MSI-H CRC and explore its role and mechanism in anti-PD-1 treatments. Tumor-specific MHC-II was linked to a better response to anti-PD-1 in MSI-H CRC and CD74 promoted assembly and transport of HLA-DR dimers.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Clinical Laboratory, Taizhou Central Hospital (Taizhou University Hospital), No. 999 Donghai Avenue, Taizhou City, 318000, Zhejiang Province, China.
Resistance to chemotherapy is a significant concern in the treatment of nasopharyngeal carcinoma (NPC), and occurs due to various mechanisms. This study is aimed to evaluate the effects of RING finger protein 138 (RNF138) in the development of cisplatin resistance to NPC. After gene overexpression and silencing, the expression levels of RNF138 were evaluated.
View Article and Find Full Text PDFSci Rep
January 2025
Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
Antibody-drug conjugates (ADCs) are an emerging strategy in cancer therapy, enhancing precision and efficacy by linking targeted antibodies to potent cytotoxic agents. This study introduces a novel ADC that combines ribonuclease A (RNase A) with cetuximab (Cet), an anti-EGFR monoclonal antibody, through a polyethylene glycol (PEG) linker (RN-PEG-Cet), aimed to induce apoptosis in KRAS mutant colorectal cancer (CRC) via a ROS-mediated pathway. RN-PEG-Cet was successfully synthesized and characterized for its physicochemical properties, retaining full enzymatic activity in RNA degradation and high binding affinity to EGFR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!