A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Glucose metabolic abnormality is associated with defective mineral homeostasis in skeletal disorder mouse model. | LitMetric

Glucose metabolic abnormality is associated with defective mineral homeostasis in skeletal disorder mouse model.

Sci China Life Sci

MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, 210061, China.

Published: April 2015

Bone was reported as a crucial organ for regulating glucose homeostasis. In this study, we found that Phex mutant mice (PUG), a model of human X-linked hypophosphatemic rickets (XLH), displayed metabolic abnormality in addition to abnormal phosphate homeostasis, skeletal deformity and growth retardation. Glucose tolerance was elevated with enhanced insulin sensitivity in PUG, though circulating insulin level decreased. Interestingly, bone mineral density defects and glucose metabolic abnormality were both rescued by adding phosphorus- and calcium-enriched supplements in daily diet. Serum insulin level, glucose tolerance and insulin sensitivity showed no differences between PUG and wild-type mice with rescued osteocalcin (OCN) following treatment. Our study suggested that OCN is a potential mediator between mineral homeostasis and glucose metabolism. This investigation brings a new perspective on glucose metabolism regulation through skeleton triggered mineral homeostasis and provides new clues in clinical therapeutics of potential metabolic disorders in XLH patients.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11427-015-4827-2DOI Listing

Publication Analysis

Top Keywords

metabolic abnormality
12
mineral homeostasis
12
glucose metabolic
8
homeostasis skeletal
8
glucose tolerance
8
insulin sensitivity
8
insulin level
8
glucose metabolism
8
glucose
7
homeostasis
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!