Parameterization for molecular Gaussian surface and a comparison study of surface mesh generation.

J Mol Model

State Key Laboratory of Scientific and Engineering Computing, National Center for Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China.

Published: May 2015

AI Article Synopsis

  • The paper discusses the use of molecular Gaussian surfaces in modeling and simulating molecular structures, highlighting the roles of decay rate and isovalue as parameters for defining these surfaces.
  • It introduces a systematic approach to determine optimal parameterization based on geometric features, using criteria such as surface area, enclosed volume, and Hausdorff distance to ensure accurate representation of the solvent excluded surface (SES).
  • The software TMSmesh is compared with other programs in terms of mesh quality and solvation energies, demonstrating that the parameterized Gaussian surface is both accurate and applicable across different molecule sizes.

Article Abstract

The molecular Gaussian surface has been frequently used in the field of molecular modeling and simulation. Typically, the Gaussian surface is defined using two controlling parameters; the decay rate and isovalue. Currently, there is a lack of studies in which a systematic approach in the determination of optimal parameterization according to the geometric features has been done. In this paper, surface area, volume enclosed by the surface and Hausdorff distance are used as three criteria for the parameterization to make the Gaussian surface approximate the solvent excluded surface (SES) well. For each of these three criteria, a search of the parameter space is carried out in order to determine the optimal parameter values. The resulted parameters are close to each other and result in similar calculated molecular properties. Approximation of the VDW surface is also done by analyzing the explicit expressions of the Gaussian surface and VDW surface, which analysis and parameters can be similarly applied to the solvent accessible surface (SAS) due to its geometric similarity to the VDW surface. Once the optimal parameters are obtained, we compare the performance of our Gaussian surface generation software TMSmesh with other commonly used software programs, focusing primarily on mesh quality and fidelity. Additionally, the Poisson-Boltzmann solvation energies based on the surface meshes generated by TMSmesh and those generated by other software programs are calculated and compared for a set of molecules with different sizes. The results of these comparisons validate both the accuracy and the applicability of the parameterized Gaussian surface.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-015-2654-9DOI Listing

Publication Analysis

Top Keywords

gaussian surface
28
surface
16
vdw surface
12
molecular gaussian
8
three criteria
8
software programs
8
gaussian
7
parameterization molecular
4
surface comparison
4
comparison study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!