An important part of the justification process is assessment of the radiation risks caused by exposure of a patient during examination. The authors developed official national methodology both for medical doctors and sanitary inspectors called 'assessment of radiation risks of patients undergoing diagnostic examinations with the use of ionizing radiation'. The document addresses patients of various age groups and a wide spectrum of modern X-ray and nuclear medicine examinations. International scale of risk categorisation was implemented by the use of effective dose with account for age dependence of radiation risk. The survey of effective doses in radiology, including CT, mammography, and intervention radiology, and nuclear medicine, including single-photon emission tomography and positron emission tomography, for patients of various age groups from several regions of Russia was used for the risk assessment. The output of the methodology is a series of tables for each diagnostic technology with lists of examinations for three age groups (children/adolescents, adults and seniors) corresponding to various radiation risk categories.

Download full-text PDF

Source
http://dx.doi.org/10.1093/rpd/ncv127DOI Listing

Publication Analysis

Top Keywords

nuclear medicine
12
age groups
12
x-ray nuclear
8
medicine examinations
8
radiation risks
8
patients age
8
radiation risk
8
emission tomography
8
russian practical
4
practical guidance
4

Similar Publications

Metal ions are indispensable to life, as they can serve as essential enzyme cofactors to drive fundamental biochemical reactions, yet paradoxically, excess is highly toxic. Higher-order cells have evolved functionally distinct organelles that separate and coordinate sophisticated biochemical processes to maintain cellular homeostasis upon metal ion stimuli. Here, we uncover the remodeling of subcellular architecture and organellar interactome in yeast initiated by several metal ion stimulations, relying on near-native three-dimensional imaging, cryo-soft X-ray tomography.

View Article and Find Full Text PDF

Nuclear factor of activated T-cells 5 (NFAT5) is a transcription factor known for its role in osmotic stress adaptation in the renal inner medulla, due to the osmotic gradient that is generated between the renal cortex and renal inner medulla. However, its broader implications in kidney injury and chronic kidney disease (CKD) are less understood. Here we used two different Cre deleter mice (Ksp1.

View Article and Find Full Text PDF

Objective: This study aimed to develop a simple machine-learning model incorporating lymph node metastasis status with F-18 Fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) and clinical information for predicting regional lymph node metastasis in patients with colon cancer.

Methods: This retrospective study included 193 patients diagnosed with colon cancer between January 2014 and December 2017. All patients underwent F-18 FDG PET/CT and blood test before surgery.

View Article and Find Full Text PDF

Among the known nuclear exportins, CRM1 is the most studied prototype. Dysregulation of CRM1 occurs in many cancers, hence, understanding the role of CRM1 in cancer can help in developing synergistic therapeutics. The study investigates how CRM1 affects prostate cancer growth and survival.

View Article and Find Full Text PDF

Mechanistic Monte Carlo simulations have proven invaluable in tackling complex challenges in radiobiology, for example for protecting astronauts from solar particle events (SPEs) during deep space missions which remains an underexplored area. In this study, the Geant4-DNA Monte Carlo code was used to assess the DNA damage caused by SPEs and evaluate the protective effectiveness of a multilayer shelter. By examining the February 1956 and October 1989 SPEs-two extreme cases-the results showed that the proposed shelter reduced DNA damage by up to 57.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!