A novel peptide for efficient siRNA delivery in vitro and therapeutics in vivo.

Acta Biomater

Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada; Waterloo Institute for Nanotechnology, University of Waterloo, ON N2L 3G1, Canada. Electronic address:

Published: July 2015

Small interfering RNA (siRNA) shows great therapeutic potential due to its ability to regulate gene expression in a highly selective manner. However, its application has been limited by ineffective cellular uptake of siRNAs. To achieve successful gene-silencing efficiency, a safe and effective delivery vector is generally required. In this study, we designed a series of amphipathic peptides that comprised a variant of a nuclear localization sequence, 0-6 histidine residues and an optional stearic acid group. Among these candidates, STR-HK exhibited good characteristics as a safe and efficient siRNA delivery vector, facilitating efficient siRNA delivery to mammalian cells without causing cytotoxicity. Moreover, the intratumoral injection of STR-HK/siRNA complexes achieved high anti-tumor activity through the downregulation of the Bcl-2 protein in mice, with an inhibition rate of 62.8%. Our data demonstrate that STR-HK is a highly promising siRNA delivery vector for therapeutic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2015.04.002DOI Listing

Publication Analysis

Top Keywords

sirna delivery
16
efficient sirna
12
delivery vector
12
sirna
5
delivery
5
novel peptide
4
peptide efficient
4
delivery vitro
4
vitro therapeutics
4
therapeutics vivo
4

Similar Publications

Triple-negative breast cancer (TNBC) has been a clinical challenge due to its high recurrence and metastasis rates. Chemotherapy remains the primary treatment for TNBC after surgery ablation, but it lacks targeted specificity and causes side effects in normal tissues. Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is significantly expressed in TNBC cells, and small interference RNA (siRNA) targeting ROR1 can effectively suppress ROR1 gene expression, thereby inhibiting proliferation and metastasis.

View Article and Find Full Text PDF

Polymer-siRNA nanovectors for treating lung inflammation.

J Control Release

December 2024

Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA. Electronic address:

Uncontrolled inflammation is the driver of numerous lung diseases. Current treatments, including corticosteroids and bronchodilators, can be effective. However, they often come with notable side effects.

View Article and Find Full Text PDF

Upregulated YTHDC1 mediates trophoblastic dysfunction inducing preterm birth in ART conceptions through enhanced RPL37 translation.

Cell Mol Life Sci

December 2024

The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, China.

Assisted reproductive technology (ART) pregnancies present a higher risk of singleton preterm birth than natural pregnancies, but the underlying molecular mechanism remains largely unknown. RNA mA modification is a key epigenetic mechanism regulating cellular function, but the role of mA modification, especially its "reader" YTHDC1, in preterm delivery remains undefined. To delineate the role and epigenetic mechanism of mA modification in ART preterm delivery, the effects of YTHDC1 on trophoblastic function were evaluated by CCK-8, EdU, Transwell, and flow cytometry analyses post its overexpression or knockdown.

View Article and Find Full Text PDF

Naked siRNAs are sensitive to enzymatic degradation, phagocytic entrapment, quick renal excretion, membrane impermeability, endosomal escape, and off-target effects. Designing a safe and efficient nanocarrier for siRNA delivery to the target site without toxicity remains a significant hurdle in gene therapy. CA is a unique derivative of hydroxyapatite and a highly pH-sensitive nanocarrier with strong particle aggregation and a high polydispersity index.

View Article and Find Full Text PDF

Hepatic diseases cause serious public health problems worldwide, and there is an urgent need to develop effective therapeutic agents. In recent years, significant progress is made in RNA therapy, and RNA molecules, such as mRNAs, siRNAs, miRNAs, and RNA aptamers, are shown to provide significant advantages in the treatment of hepatic diseases. However, the drawbacks of RNAs, such as their poor biological stability, easy degradation by nucleases in vivo, low bioavailability, and low concentrations in target tissues, significantly limit the clinical application of RNA-based drugs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!