Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4380956PMC
http://dx.doi.org/10.1002/open.201402096DOI Listing

Publication Analysis

Top Keywords

facile hydrothermal
4
hydrothermal fabrication
4
fabrication nano-oxide
4
nano-oxide hollow
4
hollow spheres
4
spheres monosaccharides
4
monosaccharides sacrificial
4
sacrificial templates
4
facile
1
fabrication
1

Similar Publications

An MIL-53(FeNiCo) decorated BiVO photoanode for efficient photoelectrochemical water oxidation.

Dalton Trans

January 2025

Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.

BiVO is considered as one of the important candidate materials for photoelectrochemical water splitting technology. However, the low efficiency of charge separation and poor kinetics of water oxidation limit its performance in PEC water splitting. In this work, a BiVO/MIL-53(FeNiCo) photoanode was constructed by a facile hydrothermal deposition method, exhibiting excellent water oxidation ability under AM 1.

View Article and Find Full Text PDF

Currently, to deal with the increasingly severe energy crisis and environmental consequences, photocatalytic technology is considered as a promise solution, and the construction of Z-scheme heterostructures are important strategies to maximize the utilization of solar energy and improve photocatalytic performance. Herein, a novel full spectrum-responsive Z-scheme Bi-BiVO-BiTiO heterojunction was constructed by a facile hydrothermal method without any templates or surfactants. A series of detailed analyses revealed that the novel Bi-BiVO-BiTiO heterojunction catalyst were prepared successfully.

View Article and Find Full Text PDF

Solar Light-Driven Efficient Degradation of Organic Pollutants Mediated by S-Scheme MoS@TiO-Layered Structures.

Nanomaterials (Basel)

December 2024

Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.

This study focuses on achieving high photocatalytic activity using MoS/TiO heterostructures (MOT). To this end, MoS and TiO were synthesized by employing hydrothermal synthesis techniques, and then MoS/TiO heterostructures were synthesized by using 1:1, 1:2, 1:3, and 1:4 ratios of MoS and TiO, respectively. While the structural and electronic changes for the 1:2 and 1:3 ratios were relatively minor, significant modifications in bandgaps and morphology were observed for the 1:1 and 1:4 ratios.

View Article and Find Full Text PDF

Facile fabrication of sensing electrode based on CoFe-MOFs/MXene for ultrasensitive detection of picomolar chloramphenicol.

Talanta

January 2025

School of Environment Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, 230026, China; Institute of Solid State Physics, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China. Electronic address:

Precise detection of ultralow-level antibiotics, such as picomole, in aqueous environments is significant for human health, however, it presents a great challenge to the adsorption capacity and electrocatalytic ability of sensing materials. Here, we used a one-step hydrothermal method to in situ grow spindle-like CoFe-based metal-organic frameworks (MOFs) with a size of about 50 nm in the region of hydrophilic MXene-loading hydrophobic carbon paper. By combining MOFs with abundant adsorption sites and MXene with high conductivity, the problems of adsorption and electrons transfer of ultralow-level antibiotics have been solved, and achieving precise detection of picomole-level antibiotics.

View Article and Find Full Text PDF

Dissolved gas analysis (DGA) is an effective method for diagnosing potential faults in oil-immersed power transformers. Metal oxide semiconductor (MOS) gas sensors exhibit excellent performance. However, high operating temperatures can accelerate device aging, thereby reducing the reliability of online monitoring.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!