This article describes laboratory testing of four passive diffusive samplers for assessing indoor air concentrations of volatile organic compounds (VOCs), including SKC Ultra II, Radiello®, Waterloo Membrane Sampler (WMS) and Automated Thermal Desorption (ATD) tubes with two different sorbents (Tenax TA and Carbopack B). The testing included 10 VOCs (including chlorinated ethenes, ethanes, and methanes, aromatic and aliphatic hydrocarbons), spanning a range of properties and including some compounds expected to pose challenges (naphthalene, methyl ethyl ketone). Tests were conducted at different temperatures (17 to 30 °C), relative humidities (30 to 90% RH), face velocities (0.014 to 0.41 m s(-1)), concentrations (1 to 100 parts per billion by volume [ppbv]) and sampling durations (1 to 7 days). The results show that all of the passive samplers provided data that met the success criteria (relative percent difference [RPD] ≤ 45% of active sample concentrations and coefficient of variation [COV] ≤ 30%) in the majority of cases, but some compounds were problematic for some samplers. The passive sampler uptake rates depend to varying degrees on the sampler, sorbent, target compounds and environmental conditions, so field calibration is advantageous for the highest levels of data quality.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4em00560kDOI Listing

Publication Analysis

Top Keywords

volatile organic
8
organic compounds
8
vocs including
8
compounds
5
passive
4
passive sampling
4
sampling volatile
4
compounds indoor
4
indoor air-controlled
4
air-controlled laboratory
4

Similar Publications

Net energy of grains for dairy goats differed with processing methods and grain types.

J Anim Sci Biotechnol

January 2025

College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.

Background: The diverse types and processing methods of grains intricately influence the sites and digestibility of starch digestion, thereby impacting energy utilization. This study aimed to explore the impact of grain variety and processing methods on the net energy (NE) in dairy goats, analyzing these effects at the level of nutrient digestion and metabolism.

Methods: Eighteen castrated Guanzhong dairy goats (44.

View Article and Find Full Text PDF

Soil cadmium pollution elicits sex-specific plant volatile emissions in response to insect herbivory in eastern cottonwood Populus deltoides.

Plant Physiol Biochem

December 2024

Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, 610041, Sichuan, China. Electronic address:

Soil heavy metal pollution is a major abiotic stressor frequently encountered by plants in conjunction with other biotic stresses like insect herbivory. Yet, it remains largely unexplored how soil metal pollution and insect herbivory act together to influence emissions of plant volatile organic compounds (VOCs), which mediate multiple ecological functions and play crucial roles in atmospheric processes. Here, we assessed the individual and combined effects of soil cadium (Cd) pollution and insect herbivory by Clostera anachoreta on VOC emissions from the seedlings of eastern cottonwood Populus deltoides, and whether these effects depend on plant sex.

View Article and Find Full Text PDF

Co-application of hydrothermal carbonization aqueous phase and biogas slurry reduced ammonia volatilization in paddy.

J Environ Manage

January 2025

Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China.

Application of biogas slurry (BS) can promote ammonia (NH) volatilization. Algae sludge and Quercus acutissima leaves are rich in resources and nutrients, and can be effectively converted into valuable products. Hydrothermal carbonization technology (HTC) is a sustainable method for the treatment of wet biomass.

View Article and Find Full Text PDF

Microbial volatile organic compounds measured in the air of a waste sorting plant and a university by thermal desorption-gas chromatography-tandem mass spectrometry.

Environ Monit Assess

January 2025

Institut de Recherche Robert-Sauvé en Santé Et en Sécurité du Travail (IRSST), Montréal, Québec, Canada.

In recyclable waste management facilities, several contaminants, mainly bioaerosols and microorganisms, can be released and cause potential adverse health effects. Given that microbial volatile organic compounds (mVOCs) are metabolites developed by molds and since they can be considered as potential biomarkers of mold exposure, their concentrations in ambient air were monitored at a recyclable waste sorting plant (WSP) and a university campus (UC) serving as control environment for comparison. A recently developed analytical method was used for the detection of 21 selected mVOCs in real conditions.

View Article and Find Full Text PDF

This research presents a systematic review of the application of metal-organic frameworks (MOFs) to detect volatile organic compounds (VOCs). VOCs, compounds with high vapor pressure at ambient temperature and normal pressure, are widely present in a variety of industrial and living environments. VOCs are not only hazardous to the environment but also have a severe impact on human health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!