Filamentous fungi, especially basidiomycetes, produce a wide range of metabolites, many of which have potential biotechnological and industrial applications. Solid-state fermentation (SSF) is very suitable for the cultivation of basidiomycetes since it mimics the natural habitat of these fungi. Some of the major advantages of SSF are the robustness of the process, the use of low-cost residual materials as substrates, and the reduced usage of water. However, monitoring key variables is difficult, which makes process control a challenge. Specifically, it is very difficult to determine the biomass during SSF process involving basidiomycetes. This is problematic, as the biomass is normally a key variable in mass and energy balance equations. Further, the success of fungal SSF processes is often evaluated, in part, based on the growth of the fungus. Direct determination of the dry weight of biomass is impossible and indirect quantification techniques must be used. Over the years, various determination techniques have been developed for the quantification of fungal biomass in SSF processes. The current review gives an overview of various direct and indirect biomass determination methods, discussing their advantages and disadvantages.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/10_2014_300 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!