Detection of bla KPC-2 in Proteus mirabilis in Brazil.

Rev Soc Bras Med Trop

Departamento de Medicina Tropical, Universidade Federal de Pernambuco, Recife, PE, Brazil.

Published: July 2015

Introduction: Infections caused by Klebsiella pneumoniae carbapenemase (KPC)-producing isolates pose a major worldwide public health problem today.

Methods: A carbapenem-resistant Proteus mirabilis clinical isolate was investigated for plasmid profiles and the occurrence of β-lactamase genes.

Results: The isolate exhibited resistance to ertapenem and imipenem and was susceptible to meropenem, polymyxin, and tigecycline. Five plasmids were identified in this isolate. DNA sequencing analysis revealed the presence of bla KPC-2 and bla TEM-1 genes. An additional PCR using plasmid DNA confirmed that bla KPC-2 was present in one of these plasmids.

Conclusions: We report the detection of bla KPC-2 in P. mirabilis in Brazil for the first time. This finding highlights the continuous transfer of bla KPC between bacterial genera, which presents a serious challenge to the prevention of infection by multidrug-resistant bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1590/0037-8682-0152-2014DOI Listing

Publication Analysis

Top Keywords

bla kpc-2
16
detection bla
8
proteus mirabilis
8
mirabilis brazil
8
bla
5
kpc-2
4
kpc-2 proteus
4
brazil introduction
4
introduction infections
4
infections caused
4

Similar Publications

Molecular Epidemiological Characteristics of -Carrying ST-11 in Hospitalized Patients.

Infect Drug Resist

January 2025

Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.

Purpose: To investigate the molecular epidemiology and risk factors of carbapenem-resistant (CRKP) infection.

Patients And Methods: Patient's clinical data and CRKP strains were collected from November 2017 to December 2018 at a tertiary hospital in Wuhan, China. The antimicrobial susceptibilities, carbapenem-resistant genes, multi-locus sequence typing (MLST), homologous analysis, and risk factors for CRKP were determined.

View Article and Find Full Text PDF

Rapid emergence, transmission, and evolution of KPC and NDM coproducing carbapenem-resistant Klebsiella pneumoniae.

Microbiol Res

January 2025

Research Institute of General Surgery, Jinling Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China. Electronic address:

Article Synopsis
  • Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a major clinical concern due to limited treatment options, worsened by the emergence of KPC and NDM co-producing strains.
  • A study identified 15 strains involved in an outbreak affecting 10 patients between October 2020 and May 2021, characterized by a highly stable hybrid plasmid co-harboring resistance genes.
  • Global genomic analysis of 327 KPC-NDM-CRKP genomes revealed potential transmission events during the COVID-19 period, highlighting the urgent public health threat posed by these resistant strains.
View Article and Find Full Text PDF

Emerging carbapenem-resistant in a tertiary care hospital in Lima, Peru.

Microbiol Spectr

January 2025

Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.

The emergence of carbapenem-resistant (CRKP) poses a significant public health threat, particularly in low- and middle-income countries (LMICs) with limited surveillance and treatment options. This study examines the genetic diversity, resistance patterns, and transmission dynamics of 66 CRKP isolates recovered over 5 years (2015-2019) after the first case of CRKP was identified at a tertiary care hospital in Lima, Peru. Our findings reveal a shift from to as the dominant carbapenemase gene after 2017.

View Article and Find Full Text PDF

Genomic characterization of ST11-KL25 hypervirulent KPC-2-producing multidrug-resistant from China.

iScience

December 2024

Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China.

The global prevalence of ST11 hypervirulent carbapenem-resistant (hv-CRKP) isolates has been increasingly documented, yet genomic characterization of this clone remains insufficiently explored. Here, we report a clinical ST11-KL25 hv-CRKP strain (KP156) that exhibited resistance to multiple antibiotics and demonstrated hypervirulence in a mouse infection model. Whole-genome sequencing revealed that KP156 harbored one virulence plasmid (pKP156-Vir) and two resistance plasmids (pKP156-KPC and pKP156-tetA).

View Article and Find Full Text PDF

Background: The emergence of colistin resistance in carbapenem-resistant Klebsiella pneumoniae (CRKP) is a significant public health concern, as colistin has been the last resort for treating such infections. This study aimed to investigate the prevalence and molecular characteristics of colistin-resistant CRKP isolates in Central South China.

Methods: CRKP isolates from twelve hospitals in Central South China were screened for colistin resistance using broth microdilution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!