Purpose: Vitamin B12 (cyanocobalamin, Cbl) is accumulated by rapidly replicating prokaryotic and eukaryotic cells. We investigated the potential of a Tc-99m labelled Cbl derivative ([(99m)Tc]PAMA(4)-Cbl) for targeting infections caused by Escherichia coli and Staphylococcus aureus. In vitro binding assays were followed by biodistribution studies in a mouse model of foreign body infection.

Procedures: E. coli (ATCC 25922) and S. aureus (ATCC 43335) were used as test strains. [(57)Co]Cbl, [(67)Ga]citrate and [(99m)Tc]DTPA served as reference compounds. The in vitro competitive binding of [(57)Co]Cbl or [(99m)Tc]PAMA(4)-Cbl, and unlabeled Cbl, to viable or killed bacteria, was evaluated at 37 and 4 °C. A cage mouse model of infection was used for biodistribution of intravenous [(57)Co]Cbl and [(99m)Tc]PAMA(4)-Cbl in cage and dissected tissues of infected and non-infected mice.

Results: Maximum binding (mean ± SD) of [(57)Co]Cbl to viable E. coli was 81.7 ± 2.6 % and to S. aureus 34.0 ± 6.7 %, at 37 °C; no binding occurred to heat-killed bacteria. Binding to both test strains was displaced by 100- to 1000-fold excess of unlabeled Cbl. The in vitro binding of [(99m)Tc]PAMA(4)-Cbl was 100-fold and 3-fold lower than the one of [(57)Co]Cbl for E. coli and S. aureus, respectively. In vivo, [(99m)Tc]PAMA(4)-Cbl showed peak percentage of injected dose (% ID) values between 1.33 and 2.3, at 30 min post-injection (p.i.). Significantly higher retention occurred in cage fluids infected with S. aureus at 4 h and with E. coli at 8 h p.i. than in non-infected animals. Accumulation into infected cages was also higher than the one of [(99m)Tc]DTPA, which showed similar biodistribution in infected and sterile mice. [(57)Co]Cbl gradually accumulated in cages with peaks % ID between 3.58 and 4.83 % achieved from 24 to 48 h. Discrimination for infection occurred only in E. coli-infected mice, at 72 h p.i. [(67)Ga]citrate, which showed a gradual accumulation into cage fluids during 12 h, was discriminative for infection from 48 to 72 h p.i. (P < 0.05).

Conclusion: Cbl displayed rapid and specific in vitro binding to test strains. [(99m)Tc]PAMA(4)-Cbl was rapidly cleared from most tissues and discriminated between sterile and infected cages, being a promising candidate for imaging infections in humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4641156PMC
http://dx.doi.org/10.1007/s11307-015-0832-xDOI Listing

Publication Analysis

Top Keywords

tc-99m labelled
8
vitamin b12
8
escherichia coli
8
coli staphylococcus
8
staphylococcus aureus
8
aureus vitro
8
vitro binding
8
mouse model
8
test strains
8
[57co]cbl [99mtc]pama4-cbl
8

Similar Publications

Validation of an alternative two-strip method for the quality control of [Tc]Tc-ETIFENIN (TECHIDA®).

Appl Radiat Isot

December 2024

Radiopharmacy Unit, Department of Pharmacy, Groupement Hospitalier Sud - Hospices Civils de Lyon, 165 chemin du Grand Revoyet, 69495, Pierre-Bénite, France; Department of Pharmacy - Groupement Hospitalier Sud - Hospices Civils de Lyon, 165 chemin du Grand Revoyet, 69495, Pierre-Bénite, France.

For hepatobiliary scintigraphy, the radiopharmaceutical drug, ETIFENIN (TECHIDA®), labelled with technetium-99m, is used as a substitute for MEBROFENIN (CHOLEDIAM®). It is generally accepted that radiopharmaceuticals should be checked prior to injection, in particular by determining radiochemical purity, to ensure high-quality images. Radiochromatographic techniques or methods described in the Summary of Product Characteristics (SmPC) and the European Pharmacopeia (Ph.

View Article and Find Full Text PDF

The use of radiopharmaceuticals for diagnostics in oncology allows for the detection of the disease at an early stage. Among diagnostic radionuclides, Tc is a promising isotope that has been used to create several drugs for clinical use. One of the most effective Tc chelators is 6-hydrazinylnicotinic acid (HYNIC), which, when combined with various vector molecules, can be used for targeted delivery of radionuclides to tumor tissues.

View Article and Find Full Text PDF

Development of Tc-Labeled Complexes with a Niraparib HYNIC Derivative for PARP-Positive Tumor Imaging.

Mol Pharm

January 2025

Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.

As an enzyme that plays an important role in DNA repair, poly(ADP-ribose) polymerase-1 (PARP-1) has become a popular target for cancer therapy. Nuclear medicine molecular imaging technology, supplemented by radiolabeled PARP-1 inhibitors, can accurately determine the expression level of PARP-1 at lesion sites to help patients choose an appropriate treatment plan. In this work, niraparib was modified with a hydrazinonicotinamide (HYNIC) group to generate the ligand NPBHYNIC, which has an affinity (IC) of 450.

View Article and Find Full Text PDF

This article presents 582 bone scan images from 291 adult patients who attended the Nuclear Medicine Service at the Instituto de Investigaciones en Ciencias de la Salud (IICS) of the Universidad Nacional de Asunción (UNA), Paraguay, between 2020 and 2024. The images were acquired using trimodal SPECT-CT-PET equipment, model AnyScan SCP, and the MEDISO brand. Approximately 20 mCi of technetium-99m methylene diphosphonate (Tc-MDP) was administered to each patient, producing whole-body planar images in anterior and posterior projections of the axial and appendicular skeleton with a resolution of 256 × 1024 pixels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!