Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Fragment-based lead discovery complements high-throughput screening and computer-aided drug design for the discovery of small-molecule inhibitors of protein-protein interactions. Fragments are molecules with molecular masses ca 280 Da or smaller, and are generally screened using structural or biophysical approaches. Several methods of fragment-based screening are feasible for any soluble protein that can be expressed and purified; specific techniques also have size limitations and/or require multiple milligrams of protein. This chapter describes some of the most common fragment-discovery methods, including surface plasmon resonance, nuclear magnetic resonance, differential scanning fluorimetry, and X-ray crystallography.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-2425-7_39 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!