Singlet fission (SF) has the potential to supersede the traditional solar energy conversion scheme by means of boosting the photon-to-current conversion efficiencies beyond the 30% Shockley-Queisser limit. Here, we show unambiguous and compelling evidence for unprecedented intramolecular SF within regioisomeric pentacene dimers in room-temperature solutions, with observed triplet quantum yields reaching as high as 156 ± 5%. Whereas previous studies have shown that the collision of a photoexcited chromophore with a ground-state chromophore can give rise to SF, here we demonstrate that the proximity and sufficient coupling through bond or space in pentacene dimers is enough to induce intramolecular SF where two triplets are generated on one molecule.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4418859 | PMC |
http://dx.doi.org/10.1073/pnas.1422436112 | DOI Listing |
J Phys Chem Lett
November 2024
Institute of Physics, Albert-Ludwigs University Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany.
We investigate the dynamical interplay between the different triplet-pair spin states that are formed in the intramolecular singlet fission process in a series of pentacene-based dimers covalently bonded to a phenylene linker in ortho, meta, and para positions. Using first-principles calculations and a density matrix quantum dynamical approach we show that the spin dipole-dipole interaction leads to significant population of the quintet spin manifold in these regioisomers when the singlet, triplet and quintet triplet-pair states are quasidegenerate. Furthermore, we also show that the relative arrangement of the pentacene-like moieties has a profound impact on the dynamics of the spin-mixing process, affecting both the relative population of the different spin-states involved in the dynamics and the time scale of the process.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560012, India.
Various analogues of the alkylsilylacetylene group are frequently used as auxiliary groups to enhance the solubility and stability of the acene dimer core, widely used as platforms to investigate intramolecular singlet fission (iSF) mechanisms. However, while in the 2,2'-linked dimers they are primarily auxiliary groups, these are essential fragments of the bridging units in 6,6'/5,5'-linked dimers, the two preferred choices for dimerization. The starkly different iSF dynamics observed in the two variants raise the question of what role the acetylene bridges play.
View Article and Find Full Text PDFChem Sci
October 2024
Department of Chemistry and Research Institute of Basic Sciences, Incheon National University Republic of Korea
An array of thiophene-based π-conjugated linkers in covalently linked pentacene dimers allow us to access diverse quantum interference (QI), modulating nonadiabatic coupling (NAC) in the singlet fission (SF) process. Simulations show that structural isomerism in terms of S atom orientation substantially alters NAC with relatively marginal impacts on energies. Extended curly arrow rules (ECARs) reveal sensitive dependence of QI on SF linker topologies and connectivity, categorizing regimes of constructive, destructive, and previously unrealized in SF research, shifted destructive QI.
View Article and Find Full Text PDFJ Phys Chem A
October 2024
Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, Heidelberg 69120, Germany.
We investigate theoretically the influence of strong light-matter coupling on the initial steps of the phototriggered singlet-fission process. In particular we focus on intramolecular singlet fission in a TIPS-pentacene dimer derivative described by a vibronic Hamiltonian including the optically active singlet excited states, doubly excited and charge transfer states, as well as the final triplet-triplet pair state. Quantum dynamics simulations of up to four dimers in the cavity indicate that the modified resonance condition imposed by the cavity strongly quenches the passage through the intermediate charge transfer and double-excitation states, thus largely reducing the triplet-triplet yield in the bare system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!