Hierarchical differentiation competence in response to retinoic acid ensures stem cell maintenance during mouse spermatogenesis.

Development

Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan

Published: May 2015

Stem cells ensure tissue homeostasis through the production of differentiating and self-renewing progeny. In some tissues, this is achieved by the function of a definitive stem cell niche. However, the mechanisms that operate in mouse spermatogenesis are unknown because undifferentiated spermatogonia (Aundiff) are motile and intermingle with differentiating cells in an 'open' niche environment of seminiferous tubules. Aundiff include glial cell line-derived neurotrophic factor receptor α1 (GFRα1)(+) and neurogenin 3 (NGN3)(+) subpopulations, both of which retain the ability to self-renew. However, whereas GFRα1(+) cells comprise the homeostatic stem cell pool, NGN3(+) cells show a higher probability to differentiate into KIT(+) spermatogonia by as yet unknown mechanisms. In the present study, by combining fate analysis of pulse-labeled cells and a model of vitamin A deficiency, we demonstrate that retinoic acid (RA), which may periodically increase in concentration in the tubules during the seminiferous epithelial cycle, induced only NGN3(+) cells to differentiate. Comparison of gene expression revealed that retinoic acid receptor γ (Rarg) was predominantly expressed in NGN3(+) cells, but not in GFRα1(+) cells, whereas the expression levels of many other RA response-related genes were similar in the two populations. Ectopic expression of RARγ was sufficient to induce GFRα1(+) cells to directly differentiate to KIT(+) cells without transiting the NGN3(+) state. Therefore, RARγ plays key roles in the differentiation competence of NGN3(+) cells. We propose a novel mechanism of stem cell fate selection in an open niche environment whereby undifferentiated cells show heterogeneous competence to differentiate in response to ubiquitously distributed differentiation-inducing signals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4419276PMC
http://dx.doi.org/10.1242/dev.118695DOI Listing

Publication Analysis

Top Keywords

stem cell
16
ngn3+ cells
16
retinoic acid
12
cells
12
gfrα1+ cells
12
differentiation competence
8
mouse spermatogenesis
8
niche environment
8
differentiate kit+
8
ngn3+
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!