E-cadherin (E-cad) is the main component of epithelial junctions in multicellular organisms, where it is essential for cell-cell adhesion. The localisation of E-cad is often strongly polarised in the apico-basal axis. However, the mechanisms required for its polarised distribution are still largely unknown. We performed a systematic RNAi screen in vivo to identify genes required for the strict E-cad apical localisation in C. elegans epithelial epidermal cells. We found that the loss of clathrin, its adaptor AP-1 and the AP-1 interactor SOAP-1 induced a basolateral localisation of E-cad without affecting the apico-basal diffusion barrier. We further found that SOAP-1 controls AP-1 localisation, and that AP-1 is required for clathrin recruitment. Finally, we also show that AP-1 controls E-cad apical delivery and actin organisation during embryonic elongation, the final morphogenetic step of embryogenesis. We therefore propose that a molecular pathway, containing SOAP-1, AP-1 and clathrin, controls the apical delivery of E-cad and morphogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/dev.118216 | DOI Listing |
Cureus
December 2024
Department of Basic and Clinical Oral Sciences, Umm Al-Qura University, Makkah, SAU.
Objectives: Head and neck malignancies (HNMs) encompass a variety of cancers that affect the oral and para-oral tissues, the most common of which are squamous cell carcinomas. Radiotherapy is commonly used to treat these cancers, often involving radiation exposure to the salivary glands. This study aims to investigate the early impacts of radiotherapy on the internal microstructure of the salivary gland cells and identify which gland exhibits the highest level of radiosensitivity.
View Article and Find Full Text PDFAPL Bioeng
March 2025
Blue Mountains World Interdisciplinary Innovation Institute (bmwi3), Blue Mountains, New South Wales, Australia.
Here, we report on the first part of a two-part experimental series to elucidate spatiotemporal cytoskeletal remodeling, which underpins the evolution of stem cell shape and fate, and the emergence of tissue structure and function. In Part I of these studies, we first develop protocols to stabilize microtubules exogenously using paclitaxel (PAX) in a standardized model murine embryonic stem cell line (C3H/10T1/2) to maximize comparability with previously published studies. We then probe native and microtubule-stabilized stem cells' capacity to adapt to volume changing stresses effected by seeding at increasing cell densities, which emulates local compression and tissue template formation during development.
View Article and Find Full Text PDFCell Tissue Res
January 2025
Department of Anatomy, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok, 10400, Thailand.
The anatomical, histological, and histochemical characteristics of the foregut (FG), midgut (MG), and hindgut (HG), as well as their alterations during the ovarian cycle in female prawns, Macrobrachium rosenbergii, were investigated. The esophagus (ESO), cardia (CD), and pylorus (PY) are the main components of the FG. An epithelium (Ep) with thick cuticle (Cu) layers lining the ESO, and the ESO is encircled by the ESO glands.
View Article and Find Full Text PDFJ Biosci Bioeng
January 2025
Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
Polarized epithelial cells are compartmentalized into apical and basement membranes with asymmetrically distributed proteins. This study aimed to establish a method for culturing epithelial cells at the fluorinated oil (Novec-7500) microdroplet surface for the formation of epithelial polarity, which is desirable for regenerative medicine and drug discovery research. Microdroplet surfaces treated with fibronectin, which regulates a variety of cell behaviors through direct interactions with cell surface integrin receptors, were prepared for culturing epithelial cells.
View Article and Find Full Text PDFPlants (Basel)
December 2024
College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!