Structural basis for the substrate selectivity of a HAD phosphatase from Thermococcus onnurineus NA1.

Biochem Biophys Res Commun

Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea. Electronic address:

Published: May 2015

Proteins in the haloalkaloic acid dehalogenase (HAD) superfamily, which is one of the largest enzyme families, is generally composed of a catalytic core domain and a cap domain. Although proteins in this family show broad substrate specificities, the mechanisms of their substrate recognition are not well understood. In this study, we identified a new substrate binding motif of HAD proteins from structural and functional analyses, and propose that this motif might be crucial for interacting with hydrophobic rings of substrates. The crystal structure of TON_0338, one of the 17 putative HAD proteins identified in a hyperthermophilic archaeon, Thermococcus onnurineus NA1, was determined as an apo-form at 2.0 Å resolution. In addition, we determined the crystal structure TON_0338 in complex with Mg(2+) or N-cyclohexyl-2-aminoethanesulfonic acid (CHES) at 1.7 Å resolution. Examination of the apo-form and CHES-bound structures revealed that CHES is sandwiched between Trp58 and Trp61, suggesting that this Trp sandwich might function as a substrate recognition motif. In the phosphatase assay, TON_0338 was shown to have high activity for flavin mononucleotide (FMN), and the docking analysis suggested that the flavin of FMN may interact with Trp58 and Trp61 in a way similar to that observed in the crystal structure. Moreover, the replacement of these tryptophan residues significantly reduced the phosphatase activity for FMN. Our results suggest that WxxW may function as a substrate binding motif in HAD proteins, and expand the diversity of their substrate recognition mode.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2015.03.179DOI Listing

Publication Analysis

Top Keywords

substrate recognition
12
crystal structure
12
thermococcus onnurineus
8
onnurineus na1
8
substrate binding
8
binding motif
8
motif proteins
8
structure ton_0338
8
trp58 trp61
8
function substrate
8

Similar Publications

Detection of zearalenone by electrochemical aptasensor based on enzyme-assisted target recycling and DNAzyme release strategy.

Talanta

January 2025

College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China; Hebei Provincial Key Laboratory of Analysis and Control for Zoonoses Microbial, Baoding, 071001, China; College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China. Electronic address:

Zearalenone has a high level of detection and exceedance in cereals and by-products. Herein, an electrochemical aptasensor for ZEN detection was proposed. The selected aptamer, which has a high affinity for ZEN, serves as a molecular recognition element and effectively avoids interference from other toxins.

View Article and Find Full Text PDF

Sensitive and accurate determination of acetamiprid is highly desirable for guaranteeing food safety. In this Letter, an energy-transfer-based dual-mode biosensor was developed using zinc-based metal-organic frameworks (Zn-MOFs) acting as both photoelectrochemical (PEC) and electrochemiluminescent (ECL) donors and Pt@CuO cubic nanocrystals (CNs) as the energy acceptor for detecting acetamiprid. By integration of aptamer recognition with two-step DNA circuit amplification (entropy-driven DNA cycle and DNA walker), the detection of acetamiprid was converted into the assay of abundant intermediate DNA strands.

View Article and Find Full Text PDF

We introduce a new abiotic-protein-based substrate for identifying English alphabet characters optically using proteinoids. Proteinoids, which are amino acid polymers produced under thermal stress conditions, have demonstrated promise as materials that are compatible with living organisms and can be used in a wide range of applications. We explore the potential of using proteinoids for the optical stimulation and detection of English alphabet characters.

View Article and Find Full Text PDF

Plasmon-Enhanced Fluorescence of Single Extracellular Vesicles Captured in Arrayed Aluminum Nanoholes.

ACS Omega

December 2024

Division of Solid-State Electronics, Department of Electrical Engineering, The Ångström Laboratory, Uppsala University, SE-751 03 Uppsala, Sweden.

Extracellular vesicles (EVs) are nanoparticles encapsulated with a lipid bilayer, and they constitute an excellent source of biomarkers for multiple diseases. However, the heterogeneity in their molecular compositions constitutes a major challenge for their recognition and profiling, thereby limiting their application as an effective biomarker. A single-EV analysis technique is crucial to both the discovery and the detection of EV subpopulations that carry disease-specific signatures.

View Article and Find Full Text PDF

Structural and Functional Insights into UDGs.

Protein Pept Lett

December 2024

Department of Biotechnology, Jaypee Institute of Information Technology, A-10 Sec 62, Noida, 201309, India.

Endogenous or exogenous DNA damage needs to be repaired, therefore, cells in all the three domains have repair pathways to maintain the integrity of their genetic material. Uracil DNA glycosylases (UDGs), also known as UNGs (uracil-DNA N-glycosylases), are part of the base-excision repair (BER) pathway. These enzymes specifically remove uracil from DNA molecules by cleaving the glycosidic bond between the uracil base and the deoxyribose sugar.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!