Background & Objectives: Lipoprotein associated phospholipase A 2 (Lp-PLA 2 ) is an important risk predictor of coronary artery disease (CAD). This study was aimed to evaluate Lp-PLA 2 activity and oxidized low density lipoprotein (oxLDL) in newly diagnosed patients of type 2 diabetes mellitus and to determine the correlation of Lp-PLA 2 activity with oxLDL and plasma glucose levels.
Methods: Blood samples were collected in patients with newly diagnosed type 2 diabetes (n=40) before any treatment was started and healthy controls (n=40). These were processed for estimating plasma glucose: fasting and post prandial, ox LDL, and Lp-PLA2 activity. The parameters in the two groups were compared. Correlation between different parameters was calculated by Pearson correlation analysis in both groups.
Results: Lp-PLA 2 activity (24.48 ± 4.91 vs 18.63 ± 5.29 nmol/min/ml, P<0.001) and oxLDL levels (52.46 ± 40.19 vs 33.26 ± 12.54 μmol/l, P<0.01) were significantly higher in patients as compared to those in controls. Lp-PLA 2 activity correlated positively with oxLDL in both controls (r=0.414, P<0.01), as well in patients (r=0.542, P<0.01). A positive correlation between Lp-PLA 2 activity and fasting plasma glucose levels was observed only in patients (r=0.348, P<0.05).
Interpretation & Conclusions: Result of this study implies that higher risk of CAD in patients with diabetes may be due to increase in Lp-PLA 2 activity during the early course of the disease. A positive correlation between enzyme activity and fasting plasma glucose indicates an association between hyperglycaemia and increased activity of Lp-PLA2. This may explain a higher occurrence of CAD in patients with diabetes. A positive correlation between oxLDL and Lp-PLA2 activity suggests that Lp-PLA2 activity may be affected by oxLDL also.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405925 | PMC |
http://dx.doi.org/10.4103/0971-5916.154512 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!