Delivery of cardiolipins to the Salmonella outer membrane is necessary for survival within host tissues and virulence.

Cell Host Microbe

Department of Microbiology, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA. Electronic address:

Published: April 2015

The outer membrane (OM) of Gram-negative bacteria is an asymmetric lipid bilayer that serves as a barrier to the environment. During infection, Gram-negative bacteria remodel their OM to promote survival and replication within host tissues. Salmonella rely on the PhoPQ two-component regulators to coordinate OM remodeling in response to environmental cues. In a screen for mediators of PhoPQ-regulated OM remodeling in Salmonella Typhimurium, we identified PbgA, a periplasmic domain-containing transmembrane protein, which binds cardiolipin glycerophospholipids near the inner membrane and promotes their PhoPQ-regulated trafficking to the OM. Purified-PbgA oligomers are tetrameric, and the periplasmic domain contains a globular region that binds to the OM in a PhoPQ-dependent manner. Thus, PbgA forms a complex that may bridge the envelope for regulated cardiolipin delivery. PbgA globular region-deleted mutant bacteria are severely attenuated for pathogenesis, suggesting that increased cardiolipin trafficking to the OM is necessary for Salmonella to survive within host tissues that activate PhoPQ.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4978220PMC
http://dx.doi.org/10.1016/j.chom.2015.03.003DOI Listing

Publication Analysis

Top Keywords

host tissues
12
outer membrane
8
gram-negative bacteria
8
delivery cardiolipins
4
salmonella
4
cardiolipins salmonella
4
salmonella outer
4
membrane survival
4
survival host
4
tissues virulence
4

Similar Publications

Evidence for microbially-mediated tradeoffs between growth and defense throughout coral evolution.

Anim Microbiome

January 2025

School of Science, Technology, Engineering, and Mathematics, Division of Biological Sciences, University of Washington Bothell, UWBB-277, Bothell, WA, 98011, USA.

Background: Evolutionary tradeoffs between life-history strategies are important in animal evolution. Because microbes can influence multiple aspects of host physiology, including growth rate and susceptibility to disease or stress, changes in animal-microbial symbioses have the potential to mediate life-history tradeoffs. Scleractinian corals provide a biodiverse, data-rich, and ecologically-relevant host system to explore this idea.

View Article and Find Full Text PDF

The complement system and neutrophils constitute the two main pillars of the host innate immune defense against infection by bacterial pathogens. Here, we identify T-Mac, a novel virulence factor of the periodontal pathogen Treponema denticola that allows bacteria to evade both defense systems. We show that T-Mac is expressed as a pre-protein that is cleaved into two functional units.

View Article and Find Full Text PDF

The abundance and behaviour of all hematopoietic components display daily oscillations, supporting the involvement of circadian clock mechanisms. The daily variations of immune cell functions, such as trafficking between blood and tissues, differentiation, proliferation, and effector capabilities are regulated by complex intrinsic (cell-based) and extrinsic (neuro-hormonal, organism-based) mechanisms. While the role of the transcriptional/translational molecular machinery, driven by a set of well-conserved genes (Clock genes), in nucleated immune cells is increasingly recognized and understood, the presence of non-transcriptional mechanisms remains almost entirely unexplored.

View Article and Find Full Text PDF

Mathematical modeling of impacts of patient differences on renin-angiotensin system and applications to COVID-19 lung fibrosis outcomes.

Comput Biol Med

January 2025

Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA; Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA; Institute for Artificial Intelligence and Data Science, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA; Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, The State University of New York, Buffalo, NY, 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14215, USA. Electronic address:

Patient-specific premorbidity, age, and sex are significant heterogeneous factors that influence the severe manifestation of lung diseases, including COVID-19 fibrosis. The renin-angiotensin system (RAS) plays a prominent role in regulating the effects of these factors. Recent evidence shows patient-specific alterations of RAS peptide homeostasis concentrations with premorbidity and the expression level of angiotensin-converting enzyme 2 (ACE2) during COVID-19.

View Article and Find Full Text PDF

Establishment of nasal and olfactory epithelium organoids for unveiling mechanism of tissue regeneration and pathogenesis of nasal diseases.

Cell Mol Life Sci

January 2025

ENT Institute, Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.

Organoid is an ideal in vitro model with cellular heterogeneity and genetic stability when passaging. Currently, organoids are exploited as new tools in a variety of preclinical researches and applications for disease modeling, drug screening, host-microbial interactions, and regenerative therapy. Advances have been made in the establishment of nasal and olfactory epithelium organoids that are used to investigate the pathogenesis of smell-related diseases and cellular/molecular mechanism underlying the regeneration of olfactory epithelium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!