Does the arthropod microbiota impact the establishment of vector-borne diseases in mammalian hosts?

PLoS Pathog

Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada.

Published: April 2015

The impact of the microbiota on the immune status of its host is a source of intense research and publicity. In comparison, the effect of arthropod microbiota on vector-borne infectious diseases has received little attention. A better understanding of the vector microbiota in relation to mammalian host immune responses is vital, as it can lead to strategies that affect transmission and improve vaccine design in a field of research where few vaccines exist and effective treatment is rare. Recent demonstrations of how microbiota decrease pathogen development in arthropods, and thus alter vector permissiveness to vector-borne diseases (VBDs), have led to renewed interest. However, hypotheses on the interactions between the arthropod-derived microbiota and the mammalian hosts have yet to be addressed. Advances in DNA sequencing technology, increased yield and falling costs, mean that these studies are now feasible for many microbiologists and entomologists. Here, we distill current knowledge and put forward key questions and experimental designs to shed light on this burgeoning research topic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4391854PMC
http://dx.doi.org/10.1371/journal.ppat.1004646DOI Listing

Publication Analysis

Top Keywords

arthropod microbiota
8
vector-borne diseases
8
microbiota
5
microbiota impact
4
impact establishment
4
establishment vector-borne
4
diseases mammalian
4
mammalian hosts?
4
hosts? impact
4
impact microbiota
4

Similar Publications

Background: Mosquito-borne diseases have a significant public health threat worldwide, with arboviruses accounting for a high proportion of infectious diseases and mortality annually. Brazil, in particular, has been suffering outbreaks of diseases transmitted by mosquito viruses, notably those of the genus, such as dengue, Zika, and chikungunya. Against this background, the São Paulo Zoo is an intriguing ecological niche to explore the virome of mosquitoes, potentially shedding light on the dynamics of arbovirus transmission within a confined setting.

View Article and Find Full Text PDF

Metabarcoding for the Monitoring of the Microbiome and Parasitome of Medically Important Mosquito Species in Two Urban and Semi-urban Areas of South Korea.

Curr Microbiol

January 2025

Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Yonsei-Ro 50-1, Seodaemun-Gu, Seoul, 03722, Republic of Korea.

Interactions between microbial communities and the host can modulate mosquito biology, including vector competence. Therefore, future vector biocontrol measures will utilize these interactions and require extensive monitoring of the mosquito microbiome. Metabarcoding strategies will be useful for conducting vector monitoring on a large scale.

View Article and Find Full Text PDF

Global warming has threatened all-rounded hierarchical biosphere by reconstructing eco-structure and bringing biodiversity variations. Pacific white shrimp, a successful model of worldwide utilizing marine ectothermic resources, is facing huge losses due to multiple diseases relevant to intestinal microbiota (IM) dysbiosis during temperature fluctuation. However, how warming mediates shrimp health remains poorly understood.

View Article and Find Full Text PDF

RNA Virus Discovery Sheds Light on the Virome of a Major Vineyard Pest, the European Grapevine Moth ().

Viruses

January 2025

Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina.

The European grapevine moth () poses a significant threat to vineyards worldwide, causing extensive economic losses. While its ecological interactions and control strategies have been well studied, its associated viral diversity remains unexplored. Here, we employ high-throughput sequencing data mining to comprehensively characterize the virome, revealing novel and diverse RNA viruses.

View Article and Find Full Text PDF

Effects of Different River Crab Polyculture Practices on Bacterial, Fungal and Protist Communities in Pond Water.

Biomolecules

December 2024

Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.

Microorganisms, including bacteria, fungi, and protists, are key drivers in aquatic ecosystems, maintaining ecological balance and normal material circulation, playing vital roles in ecosystem functions and biogeochemical processes. To evaluate the environmental impact of different river crab polyculture practices, we set up two different river crab () polyculture practices: one where river crabs were cultured with mandarin fish (), silver carp (), and freshwater fish stone moroko (), and another where river crabs were cultured just with mandarin fish and silver carp. These two polyculture practices were referred to as PC and MC, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!