Blockage of the Neonatal Leptin Surge Affects the Gene Expression of Growth Factors, Glial Proteins, and Neuropeptides Involved in the Control of Metabolism and Reproduction in Peripubertal Male and Female Rats.

Endocrinology

Department of Physiology (Animal Physiology II) (V.M., A.B.L.-R., M.-P.V.), Faculty of Biology, Universidad Complutense, 28040 Madrid, Spain; Department of Endocrinology (F.D., J.A., J.A.C.), Hospital Infantil Universitario Niño Jesús, Department of Pediatrics, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria Princesa, 28009 Madrid, Spain; Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de Obesidad y Nutrición (F.D., M.J.V., J.A., M.T.-S., J.A.C.), Instituto Carlos III, 28903 Madrid, Spain; Department of Cell Biology, Physiology, and Immunology (M.J.V., M.T.-S.), University of Córdoba and Instituto Maimónides de Investigación Biomédica, Hospital Universitario Reina Sofia, 14004 Córdoba, Spain; and The Robert H. Smith Faculty of Agriculture, Food and Environment (A.G.), The Hebrew University of Jerusalem, Rehovot, Israel 76100.

Published: July 2015

Leptin (Lep) is important in the development of neuroendocrine circuits involved in metabolic control. Because both Lep and metabolism influence pubertal development, we hypothesized that early changes in Lep signaling could also modulate hypothalamic (HT) systems involved in reproduction. We previously demonstrated that a single injection of a Lep antagonist (Antag) on postnatal day (PND)9, coincident with the neonatal Lep peak, induced sexually dimorphic modifications in trophic factors and markers of cell turnover and neuronal maturation in the HT on PND13. Here, our aim was to investigate whether the alterations induced by Lep antagonism persist into puberty. Accordingly, male and female rats were treated with a pegylated super Lep Antag from PND5 to PND9 and killed just before the normal appearance of external signs of puberty (PND33 in females and PND43 in males). There was no effect on body weight, but in males food intake increased, subcutaneous adipose tissue decreased and HT neuropeptide Y and Agouti-related peptide mRNA levels were reduced, with no effect in females. In both sexes, the Antag increased HT mRNA levels of the kisspeptin receptor, G protein-coupled recepter 54 (Gpr54). Expression of the Lep receptor, trophic factors, and glial markers were differently affected in the HT of peripubertal males and females. Lep production in adipose tissue was decreased in Antag-treated rats of both sexes, with production of other cytokines being differentially regulated between sexes. In conclusion, in addition to the long-term effects on metabolism, changes in neonatal Lep levels modifies factors involved in reproduction that could possibly affect sexual maturation.

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2014-1981DOI Listing

Publication Analysis

Top Keywords

lep
10
factors glial
8
male female
8
female rats
8
involved reproduction
8
neonatal lep
8
trophic factors
8
adipose tissue
8
tissue decreased
8
mrna levels
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!