Fetal alcohol exposure is the most common known cause of preventable mental retardation, yet we know little about how microglia respond to, or are affected by, alcohol in the developing brain in vivo. Using an acute (single day) model of moderate (3 g/kg) to severe (5 g/kg) alcohol exposure in postnatal day (P) 7 or P8 mice, we found that alcohol-induced neuroapoptosis in the neocortex is closely correlated in space and time with the appearance of activated microglia near dead cells. The timing and molecular pattern of microglial activation varied with the level of cell death. Although microglia rapidly mobilized to contact and engulf late-stage apoptotic neurons, apoptotic bodies temporarily accumulated in neocortex, suggesting that in severe cases of alcohol toxicity the neurodegeneration rate exceeds the clearance capacity of endogenous microglia. Nevertheless, most dead cells were cleared and microglia began to deactivate within 1-2 days of the initial insult. Coincident with microglial activation and deactivation, there was a transient increase in expression of pro-inflammatory factors, TNFα and IL-1β, after severe (5 g/kg) but not moderate (3 g/kg) EtOH levels. Alcohol-induced microglial activation and pro-inflammatory factor expression were largely abolished in BAX null mice lacking neuroapoptosis, indicating that microglial activation is primarily triggered by apoptosis rather than the alcohol. Therefore, acute alcohol exposure in the developing neocortex causes transient microglial activation and mobilization, promoting clearance of dead cells and tissue recovery. Moreover, cortical microglia show a remarkable capacity to rapidly deactivate following even severe neurodegenerative insults in the developing brain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4534325PMC
http://dx.doi.org/10.1002/glia.22835DOI Listing

Publication Analysis

Top Keywords

microglial activation
20
alcohol exposure
16
dead cells
12
acute alcohol
8
exposure developing
8
developing brain
8
moderate g/kg
8
severe g/kg
8
microglia dead
8
microglia
7

Similar Publications

The role of CXCL12/CXCR4/CXCR7 axis in cognitive impairment associated with neurodegenerative diseases.

Brain Behav Immun Health

February 2025

Pediatric and Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children Medical Hospital, Tehran University of Medical Sciences, Tehran, Iran.

Neurodegenerative diseases, including Alzheimer's Disease (AD), Parkinson's Disease (PD), Multiple Sclerosis (MS), and Amyotrophic Lateral Sclerosis (ALS), are characterized by progressive neuronal loss and cognitive impairment (CI). The: Cysteine-X-cysteine chemokine ligand 12(CXCL12)/CXC chemokine receptor type 4 (CXCR4)/CXC chemokine receptor type 7 (CXCR7) axis has emerged as a critical molecular pathway in the development of CI in these disorders. This review explores the role of this axis in the pathogenesis of CI across these neurodegenerative diseases, synthesizing current evidence and its implications for targeted therapies.

View Article and Find Full Text PDF

Microglial double stranded DNA accumulation induced by DNase II deficiency drives neuroinflammation and neurodegeneration.

J Neuroinflammation

January 2025

State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China.

Background: Deoxyribonuclease 2 (DNase II) is pivotal in the clearance of cytoplasmic double stranded DNA (dsDNA). Its deficiency incurs DNA accumulation in cytoplasm, which is a hallmark of multiple neurodegenerative diseases. Our previous study showed that neuronal DNase II deficiency drove tau hyperphosphorylation and neurodegeneration (Li et al.

View Article and Find Full Text PDF

Combination of rTMS and oxytocin agonist attenuate depression-like behavior after postpartum depression in mice.

Brain Res

January 2025

Department of Orthopaedics of Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, China. Electronic address:

The Diagnostic and Statistical Manual of Mental Disorders (DSM-5) categorizes postpartum depression (PPD) as a subtype of Major Depressive Disorder (MDD) with peripartum onset, generally arising within the initial trimester following delivery. This acute psychiatric condition is characterized by feelings of worthlessness, insomnia, extreme anxiety, or maternal neglect. Intranasal oxytocin (OT) and transcranial magnetic stimulation (TMS) have the potential to address impaired social cognition; nonetheless, their neuronal underpinnings, along with their safety and efficacy, are little comprehended.

View Article and Find Full Text PDF

Cerebrospinal fluid biomarkers as predictors of multiple sclerosis severity.

Mult Scler Relat Disord

January 2025

Department of Neurology, School of Medicine, Washington University in St. Louis, 660 South Euclid Avenue, St Louis, MO 63110, USA. Electronic address:

Background: Prognostic biomarkers at multiple sclerosis (MS) onset to predict disease severity may help guide initial therapy selection for people with MS. Over 20 disease-modifying treatments (DMTs) of varying levels of risk and efficacy now exist. The ability to predict MS severity would help to identify those patients at higher risk where a highly effective, but potentially risky, therapy would be optimal.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Schisandra chinensis, a traditional functional Chinese medicine, is known for its ability to tonify the kidneys, calm the heart, and tranquilize the mind. Recent pharmacological research has demonstrated its anti-inflammatory and neuroprotective effects.

Aim Of The Study: We had previously demonstrated that Schisandra chinensis lignans (SCL) promote microglia polarization to M2 phenotype via targeting cannabinoid receptor type-2 (CB2R) to exert antidepressant effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!