Mutualistic plant-pollinator interactions play a key role in biodiversity conservation and ecosystem functioning. In a community, the combination of these interactions can generate emergent properties, e.g., robustness and resilience to disturbances such as fluctuations in populations and extinctions. Given that these systems are hierarchical and complex, environmental changes must have multiple levels of influence. In addition, changes in habitat quality and in the landscape structure are important threats to plants, pollinators and their interactions. However, despite the importance of these phenomena for the understanding of biological systems, as well as for conservation and management strategies, few studies have empirically evaluated these effects at the network level. Therefore, the objective of this study was to investigate the influence of local conditions and landscape structure at multiple scales on the characteristics of plant-pollinator networks. This study was conducted in agri-natural lands in Chapada Diamantina, Bahia, Brazil. Pollinators were collected in 27 sampling units distributed orthogonally along a gradient of proportion of agriculture and landscape diversity. The Akaike information criterion was used to select models that best fit the metrics for network characteristics, comparing four hypotheses represented by a set of a priori candidate models with specific combinations of the proportion of agriculture, the average shape of the landscape elements, the diversity of the landscape and the structure of local vegetation. The results indicate that a reduction of habitat quality and landscape heterogeneity can cause species loss and decrease of networks nestedness. These structural changes can reduce robustness and resilience of plant-pollinator networks what compromises the reproductive success of plants, the maintenance of biodiversity and the pollination service stability. We also discuss the possible explanations for these relationships and the implications for landscape planning in agricultural areas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4391788 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0123628 | PLOS |
Insects
December 2024
LIBRe-Laboratory for Integrative Biodiversity Research, Finnish Museum of Natural History, University of Helsinki, 00100 Helsinki, Finland.
The native biodiversity of oceanic islands is threatened by human-driven disturbance and by the growing number of species introductions which often interfere with natural ecological processes. Here, we aim to evaluate the effect of anthropogenic disturbance on plant-pollinator interactions in the native forest communities of an oceanic island (Terceira, Azores, Portugal). We found that native species predominated in preserved sites compared to disturbed ones and that the extant plant-pollinator interactions were mostly dominated by generalist species.
View Article and Find Full Text PDFEnviron Entomol
January 2025
Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA.
Insect pollinators are essential for natural ecosystems. Without pollination, native plants are less likely to be able to persist. As natural ecosystems have become more fragmented and degraded, interest in their restoration and preservation has increased.
View Article and Find Full Text PDFInsects
November 2024
Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium.
Agricultural intensification has led to significant declines in beneficial insect populations, such as pollinators and natural enemies, along with their ecosystem services. The installation of perennial flower margins in farmland is a popular agri-environmental scheme to mitigate these losses, promoting biodiversity, pollination, and pest control. However, outcomes can vary widely, and recent insights into flower margins in an agricultural context suggest that management could be an important contributor to this variation.
View Article and Find Full Text PDFBiodivers Data J
December 2024
IMBE, Marseille, France IMBE Marseille France.
Background: The spectacular decline in pollinators and their prominent role in pollination of natural and cultivated plants has stimulated research on pollinating insects. Over the last ten years, much ecological research has been carried out on bees, often generating a large volume of specimens and increasing the importance of entomological collections. Here, we present the bee collection of the IMBE laboratory (Marseille, France) after ten years of study of plant-pollinator networks.
View Article and Find Full Text PDFAnn Bot
December 2024
Instituto Tecnológico Vale, Rua Boaventura da Silva, 955, Belém, PA 66055-090, Brazil.
Background: The frequency and intensity of droughts are expected to increase under global change, driven by anthropogenic climate change and water diversion. Precipitation is expected to become more episodic under climate change, with longer and warmer dry spells, although some areas might become wetter. Diversion of freshwater from lakes and rivers and groundwater pumping for irrigation of agricultural fields are lowering water availability to wild plant populations, increasing the frequency and intensity of drought.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!