Xenon Treatment Protects against Remote Lung Injury after Kidney Transplantation in Rats.

Anesthesiology

From the Anaesthetics, Pain Medicine, and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom (H.Z., H.H., R.O., D.G.L., H.W., M.P.V., D.M.); Department of Anesthesiology, West China Second Hospital, Sichuan University, Chengdu, China (H.H.); The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China (Q.L.); and Section of Molecular Immunology, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom (A.J.T.G.). Current address: Brunel University London, Uxbridge, Middlesex, United Kingdom (A.J.T.G.).

Published: June 2015

Background: Ischemia-reperfusion injury (IRI) of renal grafts may cause remote organ injury including lungs. The authors aimed to evaluate the protective effect of xenon exposure against remote lung injury due to renal graft IRI in a rat renal transplantation model.

Methods: For in vitro studies, human lung epithelial cell A549 was challenged with H2O2, tumor necrosis factor-α, or conditioned medium from human kidney proximal tubular cells (HK-2) after hypothermia-hypoxia insults. For in vivo studies, the Lewis renal graft was stored in 4°C Soltran preserving solution for 24 h and transplanted into the Lewis recipient, and the lungs were harvested 24 h after grafting. Cultured lung cells or the recipient after engraftment was exposed to 70% Xe or N2. Phospho (p)-mammalian target of rapamycin (mTOR), hypoxia-inducible factor-1α (HIF-1α), Bcl-2, high-mobility group protein-1 (HMGB-1), TLR-4, and nuclear factor κB (NF-κB) expression, lung inflammation, and cell injuries were assessed.

Results: Recipients receiving ischemic renal grafts developed pulmonary injury. Xenon treatment enhanced HIF-1α, which attenuated HMGB-1 translocation and NF-κB activation in A549 cells with oxidative and inflammatory stress. Xenon treatment enhanced p-mTOR, HIF-1α, and Bcl-2 expression and, in turn, promoted cell proliferation in the lung. Upon grafting, HMGB-1 translocation from lung epithelial nuclei was reduced; the TLR-4/NF-κB pathway was suppressed by xenon treatment; and subsequent tissue injury score (nitrogen vs. xenon: 26 ± 1.8 vs. 10.7 ± 2.6; n = 6) was significantly reduced.

Conclusion: Xenon treatment confers protection against distant lung injury triggered by renal graft IRI, which is likely through the activation of mTOR-HIF-1α pathway and suppression of the HMGB-1 translocation from nuclei to cytoplasm.

Download full-text PDF

Source
http://dx.doi.org/10.1097/ALN.0000000000000664DOI Listing

Publication Analysis

Top Keywords

xenon treatment
20
lung injury
12
renal graft
12
hmgb-1 translocation
12
lung
8
remote lung
8
renal grafts
8
graft iri
8
lung epithelial
8
hif-1α bcl-2
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!