Novel function of vitamin E in regulation of zebrafish (Danio rerio) brain lysophospholipids discovered using lipidomics.

J Lipid Res

Linus Pauling Institute, Oregon State University, Corvallis, OR 97331 College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331 Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331.

Published: June 2015

We hypothesized that brains from vitamin E-deficient (E-) zebrafish (Danio rerio) would undergo increased lipid peroxidation because they contain highly polyunsaturated fatty acids, thus susceptible lipids could be identified. Brains from zebrafish fed for 9 months defined diets without (E-) or with (E+) added vitamin E (500 mg RRR-α-tocopheryl acetate per kilogram diet) were studied. Using an untargeted approach, 1-hexadecanoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine [DHA-PC 38:6, PC 16:0/22:6]was the lipid that showed the most significant and greatest fold-differences between groups. DHA-PC concentrations were approximately 1/3 lower in E- (4.3 ± 0.6 mg/g) compared with E+ brains (6.5 ± 0.9 mg/g, mean ± SEM, n = 10 per group, P = 0.04). Using lipidomics, 155 lipids in brain extracts were identified. Only four phospholipids (PLs) were different (P < 0.05) between groups; they were lower in E- brains and contained DHA with DHA-PC 38:6 at the highest abundances. Moreover, hydroxy-DHA-PC 38:6 was increased in E- brains (P = 0.0341) supporting the hypothesis of DHA peroxidation. More striking was the depletion in E- brains of nearly 60% of 19 different lysophospholipids (lysoPLs) (combined P = 0.0003), which are critical for membrane PL remodeling. Thus, E- brains contained fewer DHA-PLs, more hydroxy-DHA-PCs, and fewer lysoPLs, suggesting that lipid peroxidation depletes membrane DHA-PC and homeostatic mechanisms to repair the damage resulting in lysoPL depletion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4442875PMC
http://dx.doi.org/10.1194/jlr.M058941DOI Listing

Publication Analysis

Top Keywords

zebrafish danio
8
danio rerio
8
lipid peroxidation
8
brains contained
8
brains
7
novel function
4
function vitamin
4
vitamin regulation
4
regulation zebrafish
4
rerio brain
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!