Background: Oxidative stress is involved in development of diabetes complications. Extracellular superoxide dismutase (EC-SOD, SOD3) is a major extracellular antioxidant enzyme and is highly expressed in arterial walls. Advanced oxidation protein products (AOPP) and 8-iso-prostaglandin (isoprostane) are markers of oxidative stress. We investigated association of SOD3 gene variants, plasma concentrations of EC-SOD, AOPP and isoprostane with myocardial infarction and mortality in diabetic patients.

Methods: We studied three cohorts designed to evaluate the vascular complications of diabetes: the GENEDIAB study (469 participants with type 1 diabetes at baseline; follow-up data for 259 participants), the GENESIS study (603 participants with type 1 diabetes at baseline; follow-up data for 525 participants) and the DIABHYCAR study (3137 participants with type 2 diabetes at baseline and follow-up). Duration of follow-up was 9, 5, and 5 years, respectively. Main outcome measures were incidence of myocardial infarction, and cardiovascular and total mortality during follow-up. Six single nucleotide polymorphisms in the SOD3 locus were genotyped in the three cohorts. Plasma concentrations of EC-SOD, AOPP, and isoprostane were measured in baseline samples of GENEDIAB participants.

Results: In GENEDIAB/GENESIS pooled cohorts, the minor T-allele of rs2284659 variant was inversely associated with the prevalence at baseline (Odds Ratio 0.48, 95% CI 0.29-0.78, p = 0.004) and the incidence during follow-up of myocardial infarction (Hazard Ratio 0.58, 95% CI 0.40-0.83, p = 0.003) and with cardiovascular (HR 0.33, 95% CI 0.08-0.74, p = 0.004) and all-cause mortality (HR 0.44, 95% CI 0.21-0.73, p = 0.0006). The protective allele was associated with higher plasma EC-SOD and lower plasma AOPP concentrations in GENEDIAB. It was also inversely associated with incidence of myocardial infarction (HR 0.75, 95% CI 0.59-0.94, p = 0.01) and all-cause mortality (HR 0.87, 95% CI 0.79-0.97, p = 0.008) in DIABHYCAR.

Conclusions: The T-allele of rs2284659 in the promoter of SOD3 was associated with a more favorable plasma redox status and with better cardiovascular outcomes in diabetic patients. Our results suggest that EC-SOD plays an important role in the mechanisms of vascular protection against diabetes-related oxidative stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4324771PMC
http://dx.doi.org/10.1186/s12933-014-0163-2DOI Listing

Publication Analysis

Top Keywords

myocardial infarction
20
type diabetes
16
all-cause mortality
12
oxidative stress
12
participants type
12
diabetes baseline
12
baseline follow-up
12
extracellular superoxide
8
superoxide dismutase
8
sod3 gene
8

Similar Publications

Background: Lung cancer is a leading cause of cancer-related mortality worldwide, with non-small cell lung cancer (NSCLC) comprising 85% of cases. Due to the lack of early clinical signs, metastasis often occurs before diagnosis, impacting treatment and prognosis. Cardiovascular disease (CVD) is a common comorbidity in lung cancer patients, with shared risk factors exacerbating outcomes.

View Article and Find Full Text PDF

Background: Coronary Artery Spasm (CAS) often presents in the epicardial coronary arteries. The anterior septal branch is distributed within the myocardium, and occurrences of spasms are rare. Currently, there is no available literature on this topic, and the onset of symptoms remains elusive, potentially leading to misdiagnosis.

View Article and Find Full Text PDF

Background: The Charlson Comorbidity Index (CCI) is a frequently used mortality predictor based on a scoring system for the number and type of patient comorbidities health researchers have used since the late 1980s. The initial purpose of the CCI was to classify comorbid conditions, which could alter the risk of patient mortality within a 1-year time frame. However, the CCI may not accurately reflect risk among American Indians because they are a small proportion of the US population and possibly lack representation in the original patient cohort.

View Article and Find Full Text PDF

Puerarin Protects Myocardium From Ischaemia/Reperfusion Injury by Inhibiting Ferroptosis Through Downregulation of VDAC1.

J Cell Mol Med

December 2024

Institute of Cardiovascular Surgical Diseases, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.

Despite improvements in interventional techniques leading to faster myocardial reperfusion postmyocardial infarction, there has been a significant rise in the occurrence of myocardial ischaemia/reperfusion injury (MI/RI). A deeper understanding of the underlying mechanisms of MI/RI could offer a crucial approach to reducing myocardial damage and enhancing patient outcomes. This study examined the myocardial protective properties of puerarin (PUE) in the context of MI/RI using hypoxia/reoxygenation (H/R) or ischaemia/reperfusion (I/R) injury models were employed in H9c2 cells and C57BL/6 mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!