Inhibition of HeLa cells metastasis by bioactive compounds in crocodile (Crocodylus siamensis) white blood cells extract.

Environ Toxicol

Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.

Published: November 2016

Matrix metalloproteinases (MMPs) play a key role in cancer progression, including cell invasion, metastasis, cell growth, apoptosis, angiogenesis, and cell adhesion. Thus, suppression of the MMPs activities is crucial for inhibiting cancer cells metastasis. Herein, bioactive agents from crocodile (Crocodylus siamensis) leukocyte extracts (WBCex) showed the anticancer activity with HeLa cells and inhibited the migration and invasion process by reducing gelatinases (MMP-2, MMP-9) activity and their protein levels. This mechanism is regulated via interfering Ras and p38 signal transduction. Moreover, disrupting VEGF and integrin-signaling cascade by bioactive agents are the predictable mechanisms that cause the decreasing of MMP-2 and MMP-9 activity. Hence, bioactive substances in WBCex may play the mode of action similar with MMPs inhibitor due to HeLa cell metastasis being suppressed in vitro. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1329-1336, 2016.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tox.22138DOI Listing

Publication Analysis

Top Keywords

hela cells
8
cells metastasis
8
metastasis bioactive
8
crocodile crocodylus
8
crocodylus siamensis
8
bioactive agents
8
mmp-2 mmp-9
8
mmp-9 activity
8
inhibition hela
4
cells
4

Similar Publications

Objective: A new library of Thiazolidine-2,4-dione-biphenyl Derivatives derivatives (10a-j) was designed and synthesized. All compounds were characterized by spectral data. Further, these were evaluated for their in vitro anticancer activity.

View Article and Find Full Text PDF

Mitochondria-targeting nanostructures from enzymatically degradable fluorescent amphiphilic polyesters.

Nanoscale

January 2025

School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja. S. C. Mullick Road, Jadavpur, Kolkata 700032, India.

Water-soluble π-conjugated luminescent bioprobes have been broadly used in biomedical research but are limited by the nonbiodegradability associated with their rigid C-C backbones. In the present work, we introduced three naphthalene monoimide (NMI)-functionalized amphiphilic fluorescent polyesters (P1, P2, and P3) prepared by transesterification of functional diols with an activated diester monomer of adipic acid. These polyesters featured a side-chain NMI fluorophore, imparting the required hydrophobicity for self-assembly in water and endowing the polymeric nanoassemblies with green fluorescence.

View Article and Find Full Text PDF

Background: Ginseng Berry Concentrate (GBC) enhances exercise capacity in mice, but the effects of its key component, ginsenoside Re (G-Re), on aging and mitochondrial function are not well understood. This study investigates the impact of G-Re on mitophagy and its potential to promote healthy aging.

Methods: Experiments in C2C12 myocytes and HeLa-mitoKeima-PARKIN cells assessed GBC and G-Re's effects on mitophagy, supported by Gene Set Enrichment Analysis.

View Article and Find Full Text PDF

Photothermal therapy, in which a laser is an effective tool, is a promising method for cancer treatment. Laser parameters, including power, irradiation time, type of laser radiation (continuous or chopped), and the concentration of the photothermal agent, can affect the efficiency of this method. Therefore, this study investigated and compared the effects of different laser parameters on the efficiency of photothermal treatment for cervical cancer, which is the fourth most prevalent cancer in women.

View Article and Find Full Text PDF

Retroviruses carry a genomic intron-containing RNA with a long structured 5'-untranslated region, which acts either as a genome encapsidated in the viral progeny or as an mRNA encoding the key structural protein, Gag. We developed a single-molecule microscopy approach to simultaneously visualize the viral mRNA and the nascent Gag protein during translation directly in the cell. We found that a minority of the RNA molecules serve as mRNA and that they are translated in a fast and efficient process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!