Chemical proteomic analysis of the potential toxicological mechanisms of microcystin-RR in zebrafish (Danio rerio) liver.

Environ Toxicol

Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan, 430072, People's Republic of China.

Published: October 2016

AI Article Synopsis

  • Microcystins (MCs), toxins from freshwater cyanobacteria, pose health risks to humans and aquatic life due to their mechanism of inhibiting protein phosphatases 1 and 2A.
  • This study utilized a chemical proteomic approach to identify 17 proteins from zebrafish liver that interact with MC-arginine-arginine (MC-RR), revealing their involvement in liver toxicity phenomena like cytoskeleton disruption and oxidative stress.
  • Findings suggest that MCs' overall toxicity is influenced not only by protein inhibition but also by how they distribute within cells and interact with other proteins, contributing to a better understanding of their hepatotoxic effects.

Article Abstract

Microcystins (MCs) are common toxins produced by freshwater cyanobacteria, and they represent a potential health risk to aquatic organisms and animals, including humans. Specific inhibition of protein phosphatases 1 and 2A is considered the typical mechanism of MCs toxicity, but the exact mechanism has not been fully elucidated. To further our understanding of the toxicological mechanisms induced by MCs, this study is the first to use a chemical proteomic approach to screen proteins that exhibit special interactions with MC-arginine-arginine (MC-RR) from zebrafish (Danio rerio) liver. Seventeen proteins were identified via affinity blocking test. Integration of the results of previous studies and this study revealed that these proteins play a crucial role in various toxic phenomena of liver induced by MCs, such as the disruption of cytoskeleton assembly, oxidative stress, and metabolic disorder. Moreover, in addition to inhibition of protein phosphate activity, the overall toxicity of MCs was simultaneously modulated by the distribution of MCs in cells and their interactions with other target proteins. These results provide new insight into the mechanisms of hepatotoxicity induced by MCs. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1206-1216, 2016.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tox.22128DOI Listing

Publication Analysis

Top Keywords

induced mcs
12
chemical proteomic
8
toxicological mechanisms
8
zebrafish danio
8
danio rerio
8
rerio liver
8
inhibition protein
8
mcs
7
proteomic analysis
4
analysis potential
4

Similar Publications

Copper matrix composites (Cu-MCs) have garnered significant attention due to their exceptional electrical, wear-resistant, and mechanical properties. Among them, AlO/Cu composites, reinforced with AlO, are a focal point in the field of high-strength, high-conductivity copper alloys, owing to their high strength, excellent electrical conductivity, and superior resistance to high-temperature softening. Cold deformation is an effective method for enhancing the mechanical properties of AlO/Cu composites.

View Article and Find Full Text PDF

Aims: We aimed to investigate the role of Rnf40 in hypertension-induced cerebrovascular endothelial barrier dysfunction and cognitive impairment.

Methods: We employed microarray data analysis and integrated bioinformatics databases to identify a novel E3 ligase, Rnf40, that targets Parkin. To understand the role of RNF40 in hypertension-induced cerebrovascular endothelial cell damage, we used pAAV-hFLT1-MCS-EGFP-3×Flag-mir30shRnf40 to establish an Rnf40-deficient model in spontaneously hypertensive rats (SHRs).

View Article and Find Full Text PDF

Previous abdominal surgery (PAS) increases risk of small bowel obstruction (SBO) due to adhesions, and appendectomy (appy) is an independent risk factor for abdominal adhesion-related complications. Peritoneal inflammation, e.g.

View Article and Find Full Text PDF

Flexible Mushroom-Like Cross-Scale Surface with Extreme Pressure Resistance for Telecommunication Lines Anti-Icing/Deicing.

ACS Appl Mater Interfaces

January 2025

School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, People's Republic of China.

Ice accretion caused by freezing rain or snowstorms is a common phenomenon in cold climates that seriously threatens the safety and reliability of telecommunication lines and other overhead networks. Various anti-icing strategies have been demonstrated through surface engineering to delay ice formation. However, existing anti-icing surfaces still encounter several challenges; for example, surfaces are prone to ice-pinning formation due to the impact of supercooled droplets, which leads to a loss of anti-icing effectiveness.

View Article and Find Full Text PDF

Extracranial arteriovenous malformations (eAVMs) are complex vascular lesions characterized by anomalous arteriovenous connections, vascular instability, and disruptions in endothelial cell (EC)-to-mural cell (MC) interactions. This study sought to determine whether eAVM-MCs could induce endothelial-to-mesenchymal transition (EndMT), a process known to disrupt vascular integrity, in the eAVM microenvironment. eAVM and paired control tissues were analyzed using RT-PCR for EC (, , and ) and EndMT-specific markers (, , , /.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!