Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To date, the development of microbially assisted synthesis in Bioelectrochemical Systems (BESs) has focused on mechanisms that consume energy in order to drive the electrosynthesis process. This work reports--for the first time--on novel ceramic MFC systems that generate electricity whilst simultaneously driving the electrosynthesis of useful chemical products. A novel, inexpensive and low maintenance MFC demonstrated electrical power production and implementation into a practical application. Terracotta based tubular MFCs were able to produce sufficient power to operate an LED continuously over a 7 day period with a concomitant 92% COD reduction. Whilst the MFCs were generating energy, an alkaline solution was produced on the cathode that was directly related to the amount of power generated. The alkaline catholyte was able to fix CO2 into carbonate/bicarbonate salts. This approach implies carbon capture and storage (CCS), effectively capturing CO2 through wet caustic 'scrubbing' on the cathode, which ultimately locks carbon dioxide.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioelechem.2015.03.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!