Temporomandibular disorders (TMDs) are mostly inflammatory conditions widespread in the population. Previous studies have shown positive effects of either laser or light-emitting diode (LED) phototherapies on treating TMDs, but their action and mechanism in the inflammatory infiltrate of the temporomandibular joint are still poorly understood. The aim of this study was to assess, through histological analysis, the effectiveness of using laser light (λ 780 nm, 70 mW, continous wave (CW), 10 J) and LED (λ 850 ± 10 nm, 100 mW, CW, 10 J) on the inflammation of the temporomandibular joint of rats induced by carrageenan. Forty-five animals were divided into three groups with five animals each according to the experimental times of 2, 3, and 7 days: inflammation, inflammation+laser phototherapy, and inflammation+LED phototherapy. The first irradiation was performed 24 h after induction with an interval of 48 h between sessions. After animal death, specimens were processed and stained with hematoxylin-eosin (HE) and picrosirius. Then, the samples were examined histologically. Data were statistically analyzed. The inflammation group showed mild to moderate chronic inflammatory infiltrate between bone trabecules of the condyle. Over the time course of the study in the laser group, the region of the condyle presented mild chronic inflammation and intense vascularization. In the LED group, the condyle showed aspects of normality and absence of inflammation in some specimens. In all the time points, the laser-irradiated groups showed greater amount of collagen deposition in the condyle (p = 0.04) and in the disc (p = 0.03) when compared to the inflammation and LED groups, respectively. Laser- and LED-treated groups demonstrate a smaller number of layers of the synovial membrane when compared to the non-irradiated groups. It was concluded that, in general, laser and LED phototherapies resulted in a reduction of inflammatory infiltrate in the temporomandibular joint of rat.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10103-015-1748-z | DOI Listing |
Int J Nanomedicine
January 2025
Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510095, People's Republic of China.
Purpose: Photo-immunotherapy faces challenges from poor immunogenicity and low response rate due to hypoxic microenvironment. This study presents Rh-PTZ, a small organic molecule with a D-π-A structure, that simultaneously amplifies mitochondria-targeted type-I PDT-dependent immune stimulation for the treatment of hypoxic cancer.
Methods: The hydrophobic Rh-PTZ was encapsulated into F127 to prepare Rh-PTZ nanoparticles (Rh-PTZ NPs).
Adv Skin Wound Care
January 2025
Meryem Aydin, PhD, is Assistant Professor, Faculty of Health Science, Department of Pediatric Nursing, Duzce University, Konuralp, Düzce, Turkey. Serap Balci, PhD, is Associate Professor, Florence Nightingale Nursing Faculty, Department of Pediatric Nursing, Istanbul University-Cerrahpaşa, Istanbul, Turkey.
Objective: To compare transepidermal water loss (TEWL) in preterm newborns treated with two different types of phototherapies.
Methods: In this experimental randomized controlled study, participants were 60 preterm infants aged 30 to 36 weeks' gestation who were admitted to the neonatal ICU of Duzce University Research and Application Center from December 2015 to May 2016. Researchers randomly assigned the newborns to two phototherapy groups: light-emitting diode (LED) and fluorescent phototherapy.
Arch Dermatol Res
January 2025
Department of Physiotherapy, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, China.
Background: Previous studies have proven that 308-nm light-emitting diode(308-nm LED)and 308-nm excimer lamp(308-nm MEL) are effective in treating vitiligo, but there is a lack of comparison of their efficacy for facial lesions.
Objective: To evaluate and contrast the treatment success rates of 308-nm LED versus 308-nm excimer lamp in managing facial lesions among patients suffering from stable non-segmental vitiligo.
Methods: The enrolled 119 patients with 145 lesions were randomly assigned to receive 308-nm LED or 308-nm MEL for two months.
Bull Exp Biol Med
December 2024
Research Institute of Clinical and Experimental Lymphology - Branch of Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
We studied the expression levels of microRNAs (miR-21, miR-27a, miR-221, and miR-429) in the thymus of female Wistar rats after surgical treatment of breast cancer (BC) and after photodynamic therapy for BC followed by tumor resection. In the group without treatment, the levels of pro-oncogenic miR-21, miR-27a, and miR-221 in the thymus were reduced in comparison with those in the group of intact control. After surgical treatment of BC, the levels of miR-21 and miR-27a in the thymus increased in comparison with those in BC without treatment.
View Article and Find Full Text PDFViruses
December 2024
Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
Photodynamic inactivation (PDI) has been revealed as a valuable approach against viral infections because of the fast therapeutic effect and low possibility of resistance development. The photodynamic inhibition of the infectivity of human herpes simplex virus type 1 (HSV-1) strain Victoria at different stages of its reproduction was studied. PDI activity was determined on extracellular virions, on the stage of their adsorption to the Madin-Darby bovine kidney (MDBK) cell line and inhibition of the viral replication stage by application of two tetra-methylpyridiloxy substituted gallium and zinc phthalocyanines (ZnPcMe and GaPcMe) upon 660 nm light exposure with a light-emitting diode (LED 660 nm).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!