Rhodopseudomonas palustris encodes 16 extracytoplasmic function (ECF) σ factors. To begin to investigate the regulatory network of one of these ECF σ factors, the whole proteome of R. palustris CGA010 was quantitatively analyzed by tandem mass spectrometry from cultures episomally expressing the ECF σ(RPA4225) (ecfT) versus a WT control. Among the proteins with the greatest increase in abundance were catalase KatE, trehalose synthase, a DPS-like protein, and several regulatory proteins. Alignment of the cognate promoter regions driving expression of several upregulated proteins suggested a conserved binding motif in the -35 and -10 regions with the consensus sequence GGAAC-18N-TT. Additionally, the putative anti-σ factor RPA4224, whose gene is contained in the same predicted operon as RPA4225, was identified as interacting directly with the predicted response regulator RPA4223 by mass spectrometry of affinity-isolated protein complexes. Furthermore, another gene (RPA4226) coding for a protein that contains a cytoplasmic histidine kinase domain is located immediately upstream of RPA4225. The genomic organization of orthologs for these four genes is conserved in several other strains of R. palustris as well as in closely related α-Proteobacteria. Taken together, these data suggest that ECF σ(RPA4225) and the three additional genes make up a sigma factor mimicry system in R. palustris.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/pr5012558 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!