Objective: To determine if the high negative predictive value of a multispectral digital skin lesion analysis that has been previously found in an academic-based trial would be similar in a community-based setting with its expected different distribution of pigmented lesions.
Design: Data were collected from patients undergoing routine skin examinations over a one-year period at a community-based practice in Florida. All lesions that were selected for biopsy to rule out melanoma were also imaged with multispectral digital skin lesion analysis prior to biopsy. Histopathological diagnoses and multispectral digital skin lesion analysis results were reviewed and compared with findings from a prior primarily academic center-based multispectral digital skin lesion analysis trial.
Setting/participants: Community-based clinical setting in Florida.
Measurements: Negative predictive value, sensitivity, and specificity.
Results: One hundred thirty-seven consecutive lesions were selected for biopsy and also analyzed via multispectral digital skin lesion analysis. All 21 cases with multispectral digital skin lesion analysis "Low Disorganization" readings were all histologically benign (100% negative predictive value, 95% lower confidence boundary = 96.9%). The negative predictive value and the sensitivity were not significantly different than what was found in the prior academic-based multispectral digital skin lesion analysis trial. Multispectral digital skin lesion analysis also correctly identified all high-risk lesions, which were subsequently confirmed via histology to be one invasive melanoma and 15 moderately dysplastic nevi (100% sensitivity). Specificity with multispectral digital skin lesion analysis was significantly higher than reported in the academic-based multispectral digital skin lesion analysis trial (18% vs. 10%, p=0.02).
Conclusion: Because of the high negative predictive value achieved by multispectral digital skin lesion analysis, lesions with readings of "Low Disorganization" may be considered for observation versus biopsy. Similar to what was noted in the academic center setting, multispectral digital skin lesion analysis may help dermatologists reduce the number of unnecessary biopsies while improving diagnostic accuracy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382141 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!