The main objective of this study was to map global gene expression in order to provide information about the populations of mRNA species participating in murine tooth development at 24 h intervals, starting at the 11th embryonic day (E11.5) up to the 7th post-natal day (P7). The levels of RNA species expressed during murine tooth development were mesured using a total of 58 deoxyoligonucleotide microarrays. Microarray data was validated using real-time RT-PCR. Differentially expressed genes (p < 0.05) were subjected to bioinformatic analysis to identify cellular activities significantly associated with these genes. Using ANOVA the microarray data yielded 4362 genes as being differentially expressed from the 11th embryonic day (E11.5) up to 7 days post-natal (P7), 1921 of these being genes without known functions. The remaining 2441 genes were subjected to further statistical analysis using a supervised procedure. Bioinformatic analysis results for each time-point studied suggests that the main molecular functions associated with genes expressed at the early pre-natal stages (E12.5-E18.5) were cell cycle progression, cell morphology, lipid metabolism, cellular growth, proliferation, senescence and apoptosis, whereas most genes expressed at post-natal and secretory stages (P0-P7) were significantly associated with regulation of cell migration, biosynthesis, differentiation, oxidative stress, polarization and cell death. Differentially expressed genes (DE) not described earlier during murine tooth development; Inositol 1, 4, 5-triphosphate receptor 3 (Itpr3), metallothionein 1(Mt1), cyclin-dependent kinase 4 (Cdk4), cathepsin D (Ctsd), keratin complex 2, basic, gene 6a (Krt2-6a), cofilin 1, non-muscle (Cfl1), cyclin 2 (Ccnd2), were verified by real-time RT-PCR.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4362327 | PMC |
http://dx.doi.org/10.3389/fgene.2015.00047 | DOI Listing |
Background: Yes-associated protein (YAP) is a crucial mechanosensor involved in mechanotransduction, but its role in regulating mechanical force-induced bone remodeling during orthodontic tooth movement (OTM) is unclear. This study aims to elucidate the relationship between mechanotransduction and mechanical force-induced alveolar bone remodeling during OTM.
Results: Our study confirms an asynchronous (temporal and spatial sequence) remodeling pattern of the alveolar bone under mechanical force during OTM.
Sci Rep
January 2025
Department of Growth and Development, University of Nebraska Medical Center, 4000 East Campus Loop South, 68583-0740, Lincoln, NE, US.
Osteogenesis imperfecta (OI) is a fairly common generalized connective disorder characterized by low bone mass, bone deformities and impaired bone quality that predisposes affected individuals to musculoskeletal fragility. Periodontal ligament (PDL)-alveolar bone and PDL-cementum entheses' roles under OI conditions during physiological loading and orthodontic forces remain largely unknown. In addition, bisphosphonates (e.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
Remineralization is a common strategy for the repair of early demineralized tooth enamels, but the harsh dynamic oral environment often hampers its efficacy. Rapid remineralization is expected to address this challenge, however, the stabilizers of remineralization materials often resist their transformation required for repair. Here, by dissolving the ions of calcium and phosphate in glycerol-dominant solvents, we obtain the calcium phosphate clusters (1-2 nm), which are stabilized by glycerol (with high viscosity and affinity to clusters), but can perform a fast enamel repair via the water-triggered transformation in both static and dynamic environments.
View Article and Find Full Text PDFJ Oral Biosci
December 2024
Department of Maxillofacial Orthognathics, Division of Maxillofacial and Neck Reconstruction, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45, Bunkyo-ku, Tokyo, 113-8549, Japan.
Objectives: To investigate the effects of hypoxia on tooth germ development in mice and explore the underlying mechanisms.
Methods: Tooth germs were extracted from E14.5 mouse embryos and divided into the control and hypoxia groups for organ culture.
Zhonghua Kou Qiang Yi Xue Za Zhi
January 2025
Department of Orthodontic Dentistry, School of Stomatology, The Fourth Military Medical University, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Xi'an710032, China.
To explore the distribution characteristics of glioma-associated oncogene homolog 1 (Gli1) positive cells during orthodontic tooth movement process and conduct a proteomic analysis of these cells. Forty Gli1-LacZ transgenic mice were used to establish an in orthodontic tooth movement (OTM) model for labeling Gli1 positive cells in Gli1-LacZ transgenic mice (OTM group) and an unforced control group, with tooth movement distance measured using micro-CT. The spatial relationship and distribution characteristics of Gli1 positive cells and H-type vessels of CD31 and endomucin (EMCN) in periodontal tissues were detected by immunofluorescence staining.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!