Misfolding and aggregation of α-synuclein (α-syn) into Lewy bodies is associated with a range of neurological disorders, including Parkinson's disease (PD). The cell-to-cell transmission of α-syn pathology has been linked to soluble amyloid oligomer populations that precede Lewy body formation. Oligomers produced in vitro under certain conditions have been demonstrated to induce intracellular aggregation in cell culture models. In the present study, we characterize, by ESI-ion mobility spectrometry (IMS)-MS, a specific population of α-syn oligomers. These MS-compatible oligomers were compared with oligomers with known seeding and pore-forming capabilities and were shown to have the ability to induce intracellular aggregation. Each oligomer type was shown to have distinct epitope profiles that correlated with their toxic gain-of-function. Structurally, the MS compatible oligomers populated a range of species from dimers through to hexamers. Lower-order oligomers were structurally diverse and consistent with unstructured assemblies. Higher-order oligomers were shown to be compact with ring-like structures. The observation of this compact state may explain how this natively disordered protein is able to transfer pathology from cell to cell and avoid degradation by cellular proteases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/BJ20150159 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!