Dehydrocostus lactone (DHC) is the main active ingredient extracted from a traditional Chinese medicine called Radix Aucklandiael. A few studies recently showed that DHC has anticancer potential. However, no reports exist as yet on the effects of DHC on colorectal carcinoma (CRC). This study aimed to determine whether and how DHC functions in CRC cells. After treatment with DHC, both Lovo and SW480 cells were significantly inhibited in their proliferation, cell cycle progression, migration, and invasion abilities in a dose-dependent and/or treatment time-dependent manner. Also, DHC significantly increased the apoptosis rate of SW480 cells, but not Lovo cells. The expression of eukaryotic translation initiation factor 4E (eIF4E), which was originally highly expressed in both cells, was significantly decreased by DHC. The inhibition of proliferation, migration, and invasion was significantly attenuated by the ectopic transfection of eIF4E, and was promoted by the knockdown of eIF4E in Lovo cells. To the best of our knowledge, this is the first time it has been shown that DHC suppressed the proliferation, cell cycle progression, antiapoptosis, and migration and invasion capabilities of CRC cells by the downregulation of eIF4E expression. In terms of the overexpression of eIF4E in many cancers, it was speculated that DHC might also play an anticancerous role by suppressing eIF4E expression. This discovery could lay the foundations for advancing our understanding of the anticancerous mechanism of DHC and developing DHC into a novel and effective natural anticancer therapeutic.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/CAD.0000000000000229 | DOI Listing |
Sci Rep
January 2025
PKUCare Lu'an Hospital, 046204, Shanxi, China.
Periodontitis, a common chronic inflammatory condition caused by bacteria, leads to loss of attachment, resorption of alveolar bone, and ultimately tooth loss. Therefore, reducing bacterial load and fostering alveolar bone regeneration are essential components in the treatment of periodontitis. In this study, we prepared smaller-sized Ag-Metal Organic Frameworks (Ag@MOF) and loaded with sodium alginate (Alg) hydrogel for periodontitis treatment.
View Article and Find Full Text PDFCell Death Discov
January 2025
Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
Metabolic reprogramming is considered one of the hallmarks of cancer in which cancer cells reprogram some of their metabolic cascades, mostly driven by the specific chemical microenvironment in cancer tissues. The altered metabolic pathways are increasingly being considered as potential targets for cancer therapy. In this view, Aldolase A (ALDOA), a key glycolytic enzyme, has been validated as a candidate oncogene in several cancers.
View Article and Find Full Text PDFSci Rep
January 2025
Prenatal Diagnosis Center in Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang, 550009, China.
Cervical cancer (CESC) presents significant clinical challenges due to its complex tumor microenvironment (TME) and varied treatment responses. This study identified undifferentiated M0 macrophages as high-risk immune cells critically involved in CESC progression. Co-culture experiments further demonstrated that M0 macrophages significantly promoted HeLa cell proliferation, migration, and invasion, underscoring their pivotal role in modulating tumor cell behavior within the TME.
View Article and Find Full Text PDFExp Cell Res
January 2025
Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China. Electronic address:
Insufficient trophoblast cell infiltration is implicated in the progression of preeclampsia (PE). The immunoglobulin superfamily member 8 (IGSF8) has been shown to promote cell migration, invasion, and epithelial mesenchymal transition (EMT). However, the specific impact of IGSF8 on trophoblast cells in PE has not been definitively demonstrated.
View Article and Find Full Text PDFMucosal Immunol
January 2025
CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 101408, China. Electronic address:
Mucosal tissues, including those in the respiratory and gastrointestinal tracts, are critical barrier surfaces for pathogen invasion. Infections at these sites not only trigger local immune response, but also recruit immune cells from other tissues. Emerging evidence in mouse models and human samples indicate that the immune crosstalk between lung and gut critically impact and determine the course of respiratory disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!